Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

WatchID: Wearable Device Authentication via Reprogrammable Vibration

  • Conference paper
  • First Online:
Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous 2021)

Abstract

Prevalent wearables (e.g., smartwatches and activity trackers) demand high secure measures to protect users’ private information, such as personal contacts, bank accounts, etc. While existing two-factor authentication methods can enhance traditional user authentication, they are not convenient as they require participations from users. Recently, manufacturing imperfections in hardware devices (e.g., accelerometers and WiFi interface) have been utilized for low-effort two-factor authentications. However, these methods rely on fixed device credentials that would require users to replace their devices once the device credentials are stolen. In this work, we develop a novel device authentication system, WatchID, that can identify a user’s wearable using its vibration-based device credentials. Our system exploits readily available vibration motors and accelerometers in wearables to establish a vibration communication channel to capture wearables’ unique vibration characteristics. Compared to existing methods, our vibration-based device credentials are reprogrammable and easy to use. We develop a series of data processing methods to mitigate the impact of noises and body movements. A lightweight convolutional neural network is developed for feature extraction and device authentication. Extensive experimental results using five smartwatches show that WatchID can achieve an average precision and recall of \(98\%\) and \(94\%\) respectively in various attacking scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdoli, S., Cardinal, P., Koerich, A.L.: End-to-end environmental sound classification using a 1D convolutional neural network. Expert Syst. Appl. 136, 252–263 (2019)

    Article  Google Scholar 

  2. Aloul, F., Zahidi, S., El-Hajj, W.: Two factor authentication using mobile phones. In: 2009 IEEE/ACS International Conference on Computer Systems and Applications, pp. 641–644. IEEE (2009)

    Google Scholar 

  3. AndroidDeveloper: Work with raw data, use the accelerometer. https://developer.android.com/guide/topics/sensors/sensors_motion#sensors-motion-accel

  4. Antonsson, E.K., Mann, R.W.: The frequency content of gait. J. Biomech. 18(1), 39–47 (1985)

    Article  Google Scholar 

  5. Bojinov, H., Michalevsky, Y., Nakibly, G., Boneh, D.: Mobile device identification via sensor fingerprinting. arXiv preprint arXiv:1408.1416 (2014)

  6. Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with radiometric signatures. In: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, pp. 116–127 (2008)

    Google Scholar 

  7. Clancy, T.C., Kiyavash, N., Lin, D.J.: Secure smartcardbased fingerprint authentication. In: Proceedings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications, pp. 45–52 (2003)

    Google Scholar 

  8. Danev, B., Zanetti, D., Capkun, S.: On physical-layer identification of wireless devices. ACM Comput. Surv. (CSUR) 45(1), 1–29 (2012)

    Article  Google Scholar 

  9. Das, A., Borisov, N., Caesar, M.: Do you hear what i hear? Fingerprinting smart devices through embedded acoustic components. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 441–452 (2014)

    Google Scholar 

  10. Das, A., Borisov, N., Caesar, M.: Tracking mobile web users through motion sensors: attacks and defenses. In: NDSS (2016)

    Google Scholar 

  11. Dey, S., Roy, N., Xu, W., Choudhury, R.R., Nelakuditi, S.: AccelPrint: imperfections of accelerometers make smartphones trackable. In: NDSS (2014)

    Google Scholar 

  12. Dukkipati, R.V.: Numerical methods (2010)

    Google Scholar 

  13. Eberz, S., Paoletti, N., Roeschlin, M., Kwiatkowska, M., Martinovic, I., Patané, A.: Broken hearted: how to attack ECG biometrics (2017)

    Google Scholar 

  14. Fujii, H., Shigematsu, N., Kurokawa, H., Nakagawa, T.: Telelogin: a two-factor two-path authentication technique using caller id. NTT Tech. Rev. 6(8), 1–6 (2008)

    Google Scholar 

  15. Garcia-Romero, D., Espy-Wilson, C.Y.: Automatic acquisition device identification from speech recordings. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 1806–1809. IEEE (2010)

    Google Scholar 

  16. Google: Wear OS. https://wearos.google.com/

  17. Jøsang, A., Sanderud, G.: Security in mobile communications: challenges and opportunities. In: Proceedings of the Australasian Information Security Workshop Conference on ACSW Frontiers 2003-Volume 21, pp. 43–48. Citeseer (2003)

    Google Scholar 

  18. Kim, J.W., et al.: A study on fault classification of machining center using acceleration data based on 1D CNN algorithm. J. Korean Soc. Manufact. Process Eng. 18(9), 29–35 (2019)

    Article  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021)

    Article  Google Scholar 

  21. Kreyszig, E.: Advanced Engineering Mathematics 10th Edition (2009)

    Google Scholar 

  22. Lashkari, A.H., Farmand, S., Zakaria, D., Bin, O., Saleh, D., et al.: Shoulder surfing attack in graphical password authentication. arXiv preprint arXiv:0912.0951 (2009)

  23. Li, H., et al.: VocalPrint: a MM wave-based unmediated vocal sensing system for secure authentication. IEEE Trans. Mob. Comput. (2021)

    Google Scholar 

  24. Lin, F., Song, C., Zhuang, Y., Xu, W., Li, C., Ren, K.: Cardiac scan: a non-contact and continuous heart-based user authentication system. In: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, pp. 315–328 (2017)

    Google Scholar 

  25. Liu, J., Chen, Y., Dong, Y., Wang, Y., Zhao, T., Yao, Y.D.: Continuous user verification via respiratory biometrics. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1–10. IEEE (2020)

    Google Scholar 

  26. Liu, J., Wang, Y., Chen, Y., Yang, J., Chen, X., Cheng, J.: Tracking vital signs during sleep leveraging off-the-shelf WiFi. In: Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 267–276 (2015)

    Google Scholar 

  27. Polak, A.C., Dolatshahi, S., Goeckel, D.L.: Identifying wireless users via transmitter imperfections. IEEE J. Sel. Areas Commun. 29(7), 1469–1479 (2011)

    Article  Google Scholar 

  28. Polak, A.C., Goeckel, D.L.: RF fingerprinting of users who actively mask their identities with artificial distortion. In: 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 270–274. IEEE (2011)

    Google Scholar 

  29. Ratha, N.K., Bolle, R.M., Pandit, V.D., Vaish, V.: Robust fingerprint authentication using local structural similarity. In: Proceedings Fifth IEEE Workshop on Applications of Computer Vision, pp. 29–34. IEEE (2000)

    Google Scholar 

  30. Ren, Y., Chen, Y., Chuah, M.C., Yang, J.: Smartphone based user verification leveraging gait recognition for mobile healthcare systems. In: 2013 IEEE International Conference on Sensing, Communications and Networking (SECON), pp. 149–157. IEEE (2013)

    Google Scholar 

  31. Revenkar, P., Anjum, A., Gandhare, W.: Secure iris authentication using visual cryptography. arXiv preprint arXiv:1004.1748 (2010)

  32. Sanchez-Reillo, R., Sanchez-Avila, C.: Iris recognition with low template size. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 324–329. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45344-X_47

    Chapter  Google Scholar 

  33. Shi, C., Liu, J., Borodinov, N., Leao, B., Chen, Y.: Towards environment-independent behavior-based user authentication using WiFi. In: 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 666–674. IEEE (2020)

    Google Scholar 

  34. Sun, L., Wang, Y., Cao, B., Yu, P.S., Srisa-an, W., Leow, A.D.: Sequential keystroke behavioral biometrics for mobile user identification via multi-view deep learning. In: Altun, Y., et al. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 228–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71273-4_19

    Chapter  Google Scholar 

  35. Trippel, T., Weisse, O., Xu, W., Honeyman, P., Fu, K.: WALNUT: waging doubt on the integrity of mems accelerometers with acoustic injection attacks. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 3–18. IEEE (2017)

    Google Scholar 

  36. Wazid, M., Zeadally, S., Das, A.K.: Mobile banking: evolution and threats: malware threats and security solutions. IEEE Consum. Electron. Mag. 8(2), 56–60 (2019)

    Article  Google Scholar 

  37. Zeng, Y., Pande, A., Zhu, J., Mohapatra, P.: WearIA: wearable device implicit authentication based on activity information. In: 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–9. IEEE (2017)

    Google Scholar 

  38. Zhang, Q., Zhou, D., Zeng, X.: HeartID: a multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access 5, 11805–11816 (2017)

    Article  Google Scholar 

  39. Zhang, Y., Xia, P., Luo, J., Ling, Z., Liu, B., Fu, X.: Fingerprint attack against touch-enabled devices. In: Proceedings of the Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 57–68 (2012)

    Google Scholar 

  40. Zhao, T., Wang, Y., Liu, J., Chen, Y., Cheng, J., Yu, J.: TrueHeart: continuous authentication on wrist-worn wearables using ppg-based biometrics. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 30–39. IEEE (2020)

    Google Scholar 

  41. Zhou, Z., Diao, W., Liu, X., Zhang, K.: Acoustic fingerprinting revisited: generate stable device id stealthily with inaudible sound. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 429–440 (2014)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the NSF Grants CCF1909963, CCF2000480, CCF2028858, CCF2028873, CNS1954959, CNS2120276, and CNS2120350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Q. Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, J.Q., Wang, Z., Wang, Y., Zhao, T., Wan, H., Xie, E. (2022). WatchID: Wearable Device Authentication via Reprogrammable Vibration. In: Hara, T., Yamaguchi, H. (eds) Mobile and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-94822-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94822-1_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94821-4

  • Online ISBN: 978-3-030-94822-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics