Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fed-Tra: Improving Accuracy of Deep Learning Model on Non-iid in Federated Learning

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Abstract

Federated Learning (FL) has received more and more attention from researches and industries in that it can break the data island while protecting the data privacy. However, the original federated average algorithm proposed in FL ignores the difference in distribution of data from multiple participants (widespread in reality), which seriously undermine the performance of deep learning models. It is more serious when the gap of data-volume is large. In this paper, we propose a novel and universal federated learning method, named Fed-Tra, to effectively weaken biases in the model training to build high-precision models. Fed-Tra does this with dynamically adjusting the weight of local training samples for each round in all participants. Moreover, our evaluation on real-world datasets shows that the Fed-Tra achieves nearly +28% improvement of F1-Score compared with the original federated average algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  2. Voigt, P., von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

    Book  Google Scholar 

  3. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

    Article  Google Scholar 

  4. Aledhari, M., Razzak, R., Parizi, R.M., Saeed, F.: Federated learning: a survey on enabling technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020)

    Article  Google Scholar 

  5. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189 (2019)

  6. Tian, L., Anit Kumar, S., Manzil, Z., Maziar, S., Ameet, T., Virginia, S.: Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

  7. Liu, F., Wu, X., Ge, S., Fan, W., Zou, Y. : Federated learning for vision-and-language grounding problems. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018), pp. 11572–11579 (2020)

    Google Scholar 

  8. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.: The non-iid data quagmire of decentralized machine learning. In: International Conference on Machine Learning, pp. 4387–4398 (2020)

    Google Scholar 

  9. Christopher, B., Zhong, F., Andras, P.: Federated learning with hierarchical clustering of local updates to improve training on non-IID data. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–9 (2020)

    Google Scholar 

  10. Luping, W., Wei, W., Bo, L.I.: CMFL: mitigating communication overhead for federated learning. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 954–964 (2029)

    Google Scholar 

  11. Konečnỳ, J.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  12. Stacey, T., et al.: A hybrid approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pp. 1–11(2019)

    Google Scholar 

  13. Liu, X., Li, H., Xu, G., Lu, R., He, M.: Adaptive privacy-preserving federated learning. Peer-to-peer Netw. Appl. 13(6), 2356–2366 (2020). https://doi.org/10.1007/s12083-019-00869-2

    Article  Google Scholar 

  14. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inf. 16(6), 4177–4186 (2019)

    Article  Google Scholar 

  15. Chuan, M.: On safeguarding privacy and security in the framework of federated learning. IEEE Network 34(4), 242–248 (2020)

    Article  Google Scholar 

  16. Pillutla, K., Kakade, S.M., Harchaoui, Z.: Robust aggregation for federated learning. arXiv preprint arXiv:1912.13445 (2019)

  17. Li, L., Xu, W., Chen, T., Giannakis, G.B., Ling, Q.: RSA: byzantine-robust stochastic aggregation methods for distributed learning from heterogeneous datasets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1544–1551 (2019)

    Google Scholar 

  18. Chuan, M., et al.: Astraea: self-balancing federated learning for improving classification accuracy of mobile deep learning applications. In: 2019 IEEE 37th International Conference on Computer Design (ICCD), pp. 246–254 (2019)

    Google Scholar 

  19. Liu, Y., Kang, Y., Xing, C., Chen, T., Yang, Q.: A secure federated transfer learning framework. IEEE Intell. Syst. 35(4), 70–82 (2019)

    Article  Google Scholar 

  20. Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: Fedhealth: a federated transfer learning framework for wearable healthcare. IEEE Intell. Syst. 35(4), 83–93 (2020)

    Article  Google Scholar 

  21. Kim, H., Park, J., Bennis, M., Kim, S.-L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24(6), 1279–1283 (2019)

    Article  Google Scholar 

  22. Qian, Y., Hu, L., Chen, J., Guan, X., Hassan, M.M., Alelaiwi, A.: Privacy-aware service placement for mobile edge computing via federated learning. Inf. Sci. 505, 562–570 (2019)

    Article  Google Scholar 

  23. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Sig. Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  24. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-efficient federated learning from non-iid data. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3400–3413 (2019)

    Google Scholar 

  25. Tran, N.H., Bao, W., Zomaya, A., Nguyen, M.N., Hong, C.S.: Federated learning over wireless networks: optimization model design and analysis. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1387–1395 (2020)

    Google Scholar 

  26. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2020)

    Google Scholar 

  27. Lyu, L., Yu, H., Yang, Q.: Threats to federated learning: a survey. arXiv preprint arXiv:2003.02133 (2020)

  28. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring class representatives: User-level privacy leakage from federated learning. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications [U+FF0C, pp. 2512–2520 (2019)

    Google Scholar 

  29. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

  30. Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning. In: International Conference on Machine Learning, pp. 4615–4625 (2019)

    Google Scholar 

  31. Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, N., Khazaeni, Y.: Bayesian nonparametric federated learning of neural networks. In: International Conference on Machine Learning, pp. 7252–7261 (2019)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their help in improving our paper. This work was supported by Grant 2020YFB 1005402 from the National Key R&D Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehai Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, W. et al. (2022). Fed-Tra: Improving Accuracy of Deep Learning Model on Non-iid in Federated Learning. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13155. Springer, Cham. https://doi.org/10.1007/978-3-030-95384-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95384-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95383-6

  • Online ISBN: 978-3-030-95384-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics