Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Spectral Clustering Algorithm Based on Differential Privacy Preservation

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13157))

  • 1917 Accesses

Abstract

Spectral clustering is a widely used clustering algorithm based on the advantages of simple implementation, small computational cost, and good adaptability to arbitrarily shaped data sets. However, due to the lack of data protection mechanism in spectral clustering algorithm and the fact that the processed data often contains a large amount of sensitive user information, thus an existing risk of privacy leakage. To address this potential risk, a spectral clustering algorithm based on differential privacy protection is proposed in this paper, which uses the Laplace mechanism to add noise to the input data perturbing the original data information, and then perform spectral clustering, so as to achieve the purpose of privacy protection. Experiments show that the algorithm has both stability and usability, can correctly complete the clustering task with a small loss of accuracy, and can prevent reconstruction attacks, greatly reduce the risk of sensitive information leakage, and effectively protect the model and the original data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiang, W., Wang, H., Shi, M., Wang, A., Xia, K.: DNA Motif finding method without protection can leak user privacy. IEEE Access 7, 152076–152087 (2019)

    Article  Google Scholar 

  2. Achieving Privacy Preservation when Sharing Data for Clustering. Springer, Berlin Heidelberg (2004). https://doi.org/10.1007/978-3-540-30073-1_6

  3. Nayahi, J., Kavitha, V.: Privacy and utility preserving data clustering for data anonymization and distribution on Hadoop. Future Gen. Comput. Syst. 74(SEP.), 393–408 (2016)

    Google Scholar 

  4. Practical privacy: the SuLQ framework. In: Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 13–15, 2005, ACM, Baltimore, Maryland, USA (2005)

    Google Scholar 

  5. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)

    Article  Google Scholar 

  6. Yanming, F.U., Zhenduo, L.I.: Research on k-means++ clustering algorithm based on laplace mechanism for differential privacy protection. Netinfo Sec. (2019)

    Google Scholar 

  7. Ni, T., Qiao, M., Chen, Z., Zhang, S., Zhong, H.: Utility-efficient differentially private K-means clustering based on cluster merging. Neurocomputing 424, 205–214 (2021)

    Article  Google Scholar 

  8. Xiang, W., Wei, Y., Mao, Y., Wang, L.: A differential privacy DNA motif finding method based on closed frequent patterns. Clust. Comput. 22(S2), 2907–2919 (2018)

    Google Scholar 

  9. Wu, W.M., Huang, H.K.: Research on DP-DBScan clustering algorithm based on differential privacy preservation. Comput. Eng. Sci. 37(4), 830–834 (2015)

    Google Scholar 

  10. Wu, X., Zhang, Y., Wang, A., et al.: MNSSp3: Medical big data privacy protection platform based on Internet of things. Neural Comput. Appl. 4 (2020)

    Google Scholar 

  11. Wang, T., Yucheng, L., Wang, J., Dai, H.-N., Zheng, X., Jia, W.: EIHDP: edge-intelligent hierarchical dynamic pricing based on cloud-edge-client collaboration for IoT systems. IEEE Trans. Comput. 70(8), 1285–1298 (2021)

    Article  MathSciNet  Google Scholar 

  12. Youke, W., Huang, H., Ningyun, W., Yue Wang, M., Bhuiyan, Z.A., Wang, T.: An incentive-based protection and recovery strategy for secure big data in social networks. Inf. Sci. 508, 79–91 (2020)

    Article  Google Scholar 

  13. Xiang, W., Zhang, Y., Shi, M., Li, P., Li, R., Xiong, N.N.: An adaptive federated learning scheme with differential privacy reserving. Futur. Gener. Comput. Syst. 127, 362–372 (2022). https://doi.org/10.1016/j.future.2021.09.015

    Article  Google Scholar 

  14. Wang, T., Liu, Y., Zheng, X., Dai, H.-N., Jia, W., Xie, M.: Edge-based communication optimization for distributed federated learning. In: IEEE Transactions on Network Science and Engineering (2021). https://doi.org/10.1109/TNSE.2021.3083263

  15. Fan, Y., Xiang, Z., Li, M.: Application of spectral clustering algorithm in chemical reagent library preparation optimization. Comput. Appl. Chem. 36(5), 3 (2019)

    Google Scholar 

  16. Guo, L., Yang, J., Song, N.Q.: Application of spectral clustering algorithm in the diagnostic assessment of different attribute hierarchical structures. Psychol. Sci. 41(3), 8 (2018)

    Google Scholar 

  17. Xiaoyao, Z., Dongmei, C., Yuqing, L., et al.: A spectral clustering algorithm based on differential privacy preservation. Comput. Appl. 38(10), 5

    Google Scholar 

  18. Hu, B.: Research on clustering algorithm for differential privacy protection. Nanjing University of Posts and Telecommunications (2019)

    Google Scholar 

  19. Li, J., Wei, J., Ye, M., Liu, W., Xuexian, H.: Privacy‐preserving constrained spectral clustering algorithm for large‐scale data sets. IET Inf. Secur. 14(3), 321–331 (2020). https://doi.org/10.1049/iet-ifs.2019.0255

    Article  Google Scholar 

  20. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Automata, Languages and Programming, pp. 1–12. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  21. Liu, J.X., Meng, S.F.: A review of privacy-preserving research on machine learning. Comput. Res. Dev. 057(002), 346–362 (2020)

    Google Scholar 

  22. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  23. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  24. Hagen, L, Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 11(9), 1074–1085 (1992)

    Google Scholar 

  25. Sarkar, S., Soundararajan, P.: Supervised learning of large perceptual organization: graph spectral partitioning and learning automata. IEEE Trans. Patt. Anal. Mach. Intell. 22(5), 504–525 (2000)

    Article  Google Scholar 

  26. Ding, C., He, X., Zha, H., et al.: Spectral Min-Max Cut for Graph Partitioning and Data Clustering (2001)

    Google Scholar 

  27. Meila, M., Xu, L.: Multiway Cuts and Spectral Clustering. U .Washingt on Tech Report (2003)

    Google Scholar 

  28. Cai, X.Y., Dai, G.Z., Yang, L.B.: Survey on spectral clustering algorithms. Comput. Sci. 35(7), 14–18 (2008)

    Google Scholar 

  29. Bai, L., Zhao, X., Kong, Y., et al.: A review of spectral clustering algorithms. Comput. Eng. Appl. 57(14), 12

    Google Scholar 

  30. Zhao, Z.D., Chang, X.L., Wang, Y.X.: A review of privacy protection in machine learning. J. Inf. Secur. 4(05), 5–17 (2019)

    Google Scholar 

  31. Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing. USENIX Association (2014)

    Google Scholar 

  32. Model inversion attacks that exploit confidence information and basic countermeasures. In: The 22nd ACM SIGSAC Conference. ACM (2015)

    Google Scholar 

  33. Stealing machine learning models via prediction APIs. In: 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10–12, 2016 (2016)

    Google Scholar 

  34. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. JMLR.org (2010)

    Google Scholar 

  35. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, Y., Wu, H., Zhang, Y., Gao, Y., Wu, X. (2022). A Spectral Clustering Algorithm Based on Differential Privacy Preservation. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics