Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

LIDUSA – A Learned Index Structure for Dynamical Uneven Spatial Data

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13157))

Abstract

Based on the problem that existing learned indexes are difficult to adjust dynamically with data changes, a learned index Structure for dynamical uneven spatial data (LIDUSA) is presented in our paper. To handle with the problem of poor KNN query performance on sparse regions, LIDUSA could dynamically adjust data layout by merging and splitting corresponding grid cells, and relearn mapping function of this region to make data points stored in adjacent sparse grid cell also stored in neighboring disk pages. It combines the advantage of tree-shaped indexes, which could be adjusted dynamically, and that of learned indexes. In this paper, extensive experiments are conducted on real-world dataset and synthetic datasets. From experiment results, it could be seen that LIDUSA is twice as fast as other existing indexes in the scenario of KNN query, which will greatly extend the applicable scope of learned indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, P., Lu, H., Zheng, Q., Yang, L., Pan, G.: LISA: a learned index structure for spatial data. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 2119–2133. ACM (2020). https://doi.org/10.1145/3318464.3389703

  2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  Google Scholar 

  3. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Informatica 4(1), 1–9 (1974)

    Article  Google Scholar 

  4. Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19(2), 129–147 (1982)

    Article  Google Scholar 

  5. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings of the International Conference on Management of Data, pp. 47–57. ACM (1984)

    Google Scholar 

  6. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. In: Proceedings of the International Conference on Management of Data, pp. 322–331. ACM (1990)

    Google Scholar 

  7. Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved R-tree using fractals. In: Proceedings of the International Conference on Very Large Data Bases, pp. 500–509. Morgan Kaufmann (1994)

    Google Scholar 

  8. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: a dynamic index for multi-dimensional objects. In: Proceedings of the International Conference on Very Large Data Bases, pp. 507–518. Morgan Kaufmann (1987)

    Google Scholar 

  9. Sagan, H.: Space-Filling Curves. Springer, New York (1994)

    Book  Google Scholar 

  10. Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhardt, K., Bayer, R.: Integrating the UB-Tree into a database system kernel. In: Proceedings of the International Conference on Very Large Data Bases, pp. 263–272. Morgan Kaufmann (2000)

    Google Scholar 

  11. Kraska, T., Alizadeh, M., Beutel, A., Chi, E.H., Ding, J., Kristo, A., et al.: SageDB: a learned database system. In: Proceedings of the Biennial Conference on Innovative Data Systems Research (2019)

    Google Scholar 

  12. Wang, H., Fu, X., Xu, J., Lu, H.: Learned index for spatial queries. In: Proceedings of the IEEE International Conference on Mobile Data Management, pp. 569–574. IEEE (2019)

    Google Scholar 

  13. Royden, H.L., Fitzpatrick, P.M.: Real Analysis (2010)

    Google Scholar 

  14. Nathan, V., Ding, J., Alizadeh, M., Kraska, T.: Learning multi-dimensional indexes. In: Proceedings of the International Conference on Management of Data, pp. 985−1000. ACM (2020)

    Google Scholar 

  15. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  16. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: SIGMOD, pp. 489–504. ACM (2018)

    Google Scholar 

  17. Davitkova, A., Milchevski, E., Michel, S.: The ML-index: a multidimensional, learned index for point, range, and nearest-neighbor queries. In: Proceedings of the International Conference on Extending Database Technology, pp. 407–410 (2020)

    Google Scholar 

  18. Ho, D., Ding, J., Misra, S., Tatbul, N., Nathan, V., Vasimuddin, et al.: LISA: towards learned DNA sequence search. arXiv: Databases (2019)

    Google Scholar 

  19. Kirsche, M., Das, A., Schatz, M.C..: Sapling: accelerating suffix array queries with learned data models. bioRxiv (2020)

    Google Scholar 

  20. Kristo, A., Vaidya, K., Çetintemel, U., Misra, S., Kraska, T.: The case for a learned sorting algorithm. In: Proceedings of the International Conference on Management of Data, pp. 1001–1016. ACM (2020)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by Science and Technology Planning Project of Fujian Province under Grant No. 2020H0023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Wang, Y., Zhu, S. (2022). LIDUSA – A Learned Index Structure for Dynamical Uneven Spatial Data. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics