Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Green Pipeline for Out-of-Domain Public Sentiment Analysis

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13087))

Included in the following conference series:

Abstract

In the changing social and economic environment, organisations are keen to act promptly and appropriately to changes. Sentiment analysis can be applied to social media data to capture timely information of new events and the corresponding public opinions. However, currently both the social topics and trending words are changing just as rapidly as the target topics and domains that organisations are interested in investigating. Therefore, there is a need for a well-trained sentiment analysis model able to handle out-of-domain input. Current solutions mainly focus on using domain adaptation techniques, but these solutions require domain-specific data and inevitably introduce extra overheads. To tackle this challenge, we propose a green Artificial Intelligence (AI) solution for a sentiment analysis pipeline (GreenSAP) to gain a better understanding of the changing public opinions on social media. Specifically, we propose to leverage the expressively powerful capability of the pre-trained Transformer encoder, and make use of several publicly-available sentiment analysis datasets from various domains and scenarios to develop a pipeline model. A sarcasm detection model is also included to eliminate false positive predictions. In experiments, this model significantly outperforms its competitors on three public benchmark datasets and on two of our labelled out-of-domain datasets for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this work, we focus on the “aspect-term” setting where \(t\in s\) rather than the “aspect-category” setting with pre-set aspect categories.

References

  1. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.J.: Sentiment analysis of Twitter data. In: LSM, pp. 30–38 (2011)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR, pp. 1–15 (2015)

    Google Scholar 

  3. Castro, S., Hazarika, D., Pérez-Rosas, V., Zimmermann, R., Mihalcea, R., Poria, S.: Towards multimodal sarcasm detection (an _obviously_ perfect paper). arXiv preprint arXiv:1906.01815 (2019)

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  5. Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent Twitter sentiment classification. In: ACL (2014)

    Google Scholar 

  6. Fang, X., Zhan, J.: Sentiment analysis using product review data. J. Big Data 2(1), 1–14 (2015). https://doi.org/10.1186/s40537-015-0015-2

    Article  Google Scholar 

  7. Ghosh, D., Vajpayee, A., Muresan, S.: A report on the 2020 sarcasm detection shared task. arXiv preprint arXiv:2005.05814 (2020)

  8. He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: Exploiting document knowledge for aspect-level sentiment classification. In: ACL, pp. 579–585 (2018)

    Google Scholar 

  9. Hee, C.V., Lefever, E., Hoste, V.: SemEval-2018 task 3: irony detection in English tweets. In: SemEval@NAACL-HLT, pp. 39–50 (2018)

    Google Scholar 

  10. Jo, Y., Oh, A.H.: Aspect and sentiment unification model for online review analysis. In: WSDM, pp. 815–824 (2011)

    Google Scholar 

  11. Joshi, A., Bhattacharyya, P., Carman, M.J.: Automatic sarcasm detection: a survey. CSUR 50(5), 1–22 (2017)

    Article  Google Scholar 

  12. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)

    Article  Google Scholar 

  13. Liu, B.: Sentiment Analysis - Mining Opinions, Sentiments, and Emotions. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  14. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  15. Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: 1SemEval 2016 (2016)

    Google Scholar 

  16. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: SemEval 2014, August 2014

    Google Scholar 

  17. Potamias, R.A., Siolas, G., Stafylopatis, A.G.: A transformer-based approach to irony and sarcasm detection. Neural Comput. Appl. 32(23), 17309–17320 (2020). https://doi.org/10.1007/s00521-020-05102-3

    Article  Google Scholar 

  18. Rietzler, A., Stabinger, S., Opitz, P., Engl, S.: Adapt or get left behind: domain adaptation through BERT language model finetuning for aspect-target sentiment classification. In: LREC, pp. 4933–4941 (2020)

    Google Scholar 

  19. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. arXiv preprint arXiv:1907.10597 (2019)

  20. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP, pp. 1631–1642 (2013)

    Google Scholar 

  21. Sun, C., Huang, L., Qiu, X.: Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In: NAACL-HLT, pp. 380–385 (2019)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  23. Wang, K., Shen, W., Yang, Y., Quan, X., Wang, R.: Relational graph attention network for aspect-based sentiment analysis. In: ACL, pp. 3229–3238 (2020)

    Google Scholar 

  24. Wang, Z., Wu, Z., Wang, R., Ren, Y.: Twitter sarcasm detection exploiting a context-based model. In: Wang, J., et al. (eds.) WISE 2015. LNCS, vol. 9418, pp. 77–91. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26190-4_6

    Chapter  Google Scholar 

  25. Wiebe, J., Bruce, R., O’Hara, T.P.: Development and use of a gold-standard data set for subjectivity classifications. In: ACL, pp. 246–253 (1999)

    Google Scholar 

  26. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(4), e1253 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, M., Jiang, J., Shen, T., Wang, Y., Gerrard, L., Clarke, A. (2022). A Green Pipeline for Out-of-Domain Public Sentiment Analysis. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13087. Springer, Cham. https://doi.org/10.1007/978-3-030-95405-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95405-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95404-8

  • Online ISBN: 978-3-030-95405-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics