Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Linguistic Dependency Guided Graph Convolutional Networks for Named Entity Recognition

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13088))

Included in the following conference series:

Abstract

The GCN model used for named entity recognition (NER) tasks reflects promising results by capturing the long-distance syntactic dependency between words in sentences. However, existing models focus on the syntactic relations, we study the usefulness of linguistic, including semantic and syntactic dependency types information for NER. Through experiments on the OntoNotes 5.0 data set and ConLL2003 data set, we have demonstrated the significant improvement of our new SDP-GCN NER model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A Python package that includes many state-of-the-art syntactic/semantic parsers, https://github.com/yzhangcs/parser/.

References

  1. Aguilar, G., Solorio, T.: Dependency-aware named entity recognition with relative and global attentions. arXiv preprint arXiv:1909.05166 (2019)

  2. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of COLING-2018, pp. 1638–1649 (2018)

    Google Scholar 

  3. Bale, T.L., Vale, W.W.: CRF and CRF receptors: role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol. 44, 525–557 (2004)

    Article  Google Scholar 

  4. Cetoli, A., Bragaglia, S., O’Harney, A.D., Sloan, M.: Graph convolutional networks for named entity recognition. In: TLT (2018)

    Google Scholar 

  5. Che, W., Shao, Y., Liu, T., Ding, Y.: SemEval-2016 task 9: Chinese semantic dependency parsing. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 1074–1080 (2016)

    Google Scholar 

  6. Chen, T., Xu, R., He, Y., Wang, X.: Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Exp. Syst. Appl. 72, 221–230 (2017)

    Article  Google Scholar 

  7. Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., Feng, X.: Multi-range attentive bicomponent graph convolutional network for traffic forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3529–3536 (2020)

    Google Scholar 

  8. Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016)

    Article  Google Scholar 

  9. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Proces. Syst. 29, 3844–3852 (2016)

    Google Scholar 

  10. Deng, C., Zhao, Z., Wang, Y., Zhang, Z., Feng, Z.: GraphZoom: a multi-level spectral approach for accurate and scalable graph embedding. arXiv preprint arXiv:1910.02370 (2019)

  11. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT-2019, pp. 4171–4186 (2019)

    Google Scholar 

  12. Dong, L., Lapata, M.: Coarse-to-fine decoding for neural semantic parsing. In: Proceedings of ACL-2018, pp. 731–742 (2018)

    Google Scholar 

  13. Dozat, T., Manning, C.D.: Deep biaffine attention for neural dependency parsing. In: Proceedings of ICLR-2017 (2017)

    Google Scholar 

  14. Finkel, J.R., Grenager, T., Manning, C.D.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of ACL-2005, pp. 363–370 (2005)

    Google Scholar 

  15. Ghaddar, A., Langlais, P.: Robust lexical features for improved neural network named-entity recognition. arXiv preprint arXiv:1806.03489 (2018)

  16. Gillies, G., Linton, E., Lowry, P.: Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299(5881), 355–357 (1982)

    Article  Google Scholar 

  17. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. In: Proceedings of LREC-2018 (2018)

    Google Scholar 

  18. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging (2015)

    Google Scholar 

  19. Jie, Z., Lu, W.: Dependency-guided LSTM-CRF for named entity recognition. In: Proceedings of EMNLP-2019, pp. 3860–3870 (2019)

    Google Scholar 

  20. Jie, Z., Muis, A.O., Lu, W.: Efficient dependency-guided named entity recognition. In: Proceedings of AAAI-2017, pp. 3457–3465 (2017)

    Google Scholar 

  21. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  22. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML-2001, pp. 282–289 (2001)

    Google Scholar 

  23. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: Proceedings of NAACL-HLT-2016, pp. 260–270 (2016)

    Google Scholar 

  24. Li, C., Qin, X., Xu, X., Yang, D., Wei, G.: Scalable graph convolutional networks with fast localized spectral filter for directed graphs. IEEE Access 8, 105634–105644 (2020)

    Article  Google Scholar 

  25. Li, P.H., Dong, R.P., Wang, Y.S., Chou, J.C., Ma, W.Y.: Leveraging linguistic structures for named entity recognition with bidirectional recursive neural networks. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2664–2669 (2017)

    Google Scholar 

  26. Lin, B.Y., Xu, F.F., Luo, Z., Zhu, K.: Multi-channel LSTM-CRF model for emerging named entity recognition in social media. In: Proceedings of the 3rd Workshop on Noisy User-generated Text, pp. 160–165 (2017)

    Google Scholar 

  27. Ling, X., Weld, D.S.: Fine-grained entity recognition. In: Proceedings of AAAI-2012 (2012)

    Google Scholar 

  28. Luo, L., et al.: An attention-based BILSTM-CRF approach to document-level chemical named entity recognition. Bioinformatics 34(8), 1381–1388 (2018)

    Article  Google Scholar 

  29. Ma, Y., Hao, J., Yang, Y., Li, H., Jin, J., Chen, G.: Spectral-based graph convolutional network for directed graphs. arXiv preprint arXiv:1907.08990 (2019)

  30. Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks for semantic role labeling. In: Proceedings of EMNLP-2017, pp. 1506–1515 (2017)

    Google Scholar 

  31. Nayel, H.A., Shashirekha, H., Shindo, H., Matsumoto, Y.: Improving multi-word entity recognition for biomedical texts. arXiv preprint arXiv:1908.05691 (2019)

  32. Nie, Y., Tian, Y., Song, Y., Ao, X., Wan, X.: Improving named entity recognition with attentive ensemble of syntactic information. arXiv preprint arXiv:2010.15466 (2020)

  33. Oepen, S., et al.: SemEval 2015 task 18: broad-coverage semantic dependency parsing. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 915–926 (2015)

    Google Scholar 

  34. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of EMNLP-2014, pp. 1532–1543 (2014)

    Google Scholar 

  35. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of NAACL-HLT-2018, pp. 2227–2237 (2018)

    Google Scholar 

  36. Plotsky, P.M., Meaney, M.J.: Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mole. Brain Res. 18(3), 195–200 (1993)

    Article  Google Scholar 

  37. Pradhan, S., et al.: Towards robust linguistic analysis using ontonotes. In: Proceedings of CoNLL-2013, pp. 143–152 (2013)

    Google Scholar 

  38. Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in ontonotes. In: Joint Conference on EMNLP and CoNLL-Shared Task, pp. 1–40 (2012)

    Google Scholar 

  39. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of CoNLL-09, pp. 147–155 (2009)

    Google Scholar 

  40. Sang, E.F.T.K., Meulder, F.D.: Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In: Proceedings of CoNLL-2003, pp. 142–147 (2003)

    Google Scholar 

  41. Sasano, R., Kurohashi, S.: Japanese named entity recognition using structural natural language processing. In: Proceedings of IJCNLP-2008, pp. 607–612 (2008)

    Google Scholar 

  42. Siami-Namini, S., Tavakoli, N., Namin, A.S.: The performance of LSTM and BiLSTM in forecasting time series. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 3285–3292. IEEE (2019)

    Google Scholar 

  43. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

  44. Xu, G., Meng, Y., Qiu, X., Yu, Z., Wu, X.: Sentiment analysis of comment texts based on BiLSTM. IEEE Access 7, 51522–51532 (2019)

    Article  Google Scholar 

  45. Yaghoobian, N., Kleissl, J.: An indoor-outdoor building energy simulator to study urban modification effects on building energy use-model description and validation. Energy Build. 54, 407–417 (2012)

    Article  Google Scholar 

  46. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  47. Zhang, M.S.: A survey of syntactic-semantic parsing based on constituent and dependency structures. Sci. China Technol. Sci. 63(10), 1898–1920 (2020). https://doi.org/10.1007/s11431-020-1666-4

    Article  Google Scholar 

  48. Zhang, Y., Qi, P., Manning, C.D.: Graph convolution over pruned dependency trees improves relation extraction. In: Proceedings of EMNLP-2018, pp. 2205–2215 (2018)

    Google Scholar 

  49. Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, X., Zhou, J., Wang, S., Li, X., Zheng, B., Liu, D. (2022). Linguistic Dependency Guided Graph Convolutional Networks for Named Entity Recognition. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13088. Springer, Cham. https://doi.org/10.1007/978-3-030-95408-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95408-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95407-9

  • Online ISBN: 978-3-030-95408-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics