Abstract
The GCN model used for named entity recognition (NER) tasks reflects promising results by capturing the long-distance syntactic dependency between words in sentences. However, existing models focus on the syntactic relations, we study the usefulness of linguistic, including semantic and syntactic dependency types information for NER. Through experiments on the OntoNotes 5.0 data set and ConLL2003 data set, we have demonstrated the significant improvement of our new SDP-GCN NER model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A Python package that includes many state-of-the-art syntactic/semantic parsers, https://github.com/yzhangcs/parser/.
References
Aguilar, G., Solorio, T.: Dependency-aware named entity recognition with relative and global attentions. arXiv preprint arXiv:1909.05166 (2019)
Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of COLING-2018, pp. 1638–1649 (2018)
Bale, T.L., Vale, W.W.: CRF and CRF receptors: role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol. 44, 525–557 (2004)
Cetoli, A., Bragaglia, S., O’Harney, A.D., Sloan, M.: Graph convolutional networks for named entity recognition. In: TLT (2018)
Che, W., Shao, Y., Liu, T., Ding, Y.: SemEval-2016 task 9: Chinese semantic dependency parsing. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 1074–1080 (2016)
Chen, T., Xu, R., He, Y., Wang, X.: Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Exp. Syst. Appl. 72, 221–230 (2017)
Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., Feng, X.: Multi-range attentive bicomponent graph convolutional network for traffic forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3529–3536 (2020)
Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016)
Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Proces. Syst. 29, 3844–3852 (2016)
Deng, C., Zhao, Z., Wang, Y., Zhang, Z., Feng, Z.: GraphZoom: a multi-level spectral approach for accurate and scalable graph embedding. arXiv preprint arXiv:1910.02370 (2019)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT-2019, pp. 4171–4186 (2019)
Dong, L., Lapata, M.: Coarse-to-fine decoding for neural semantic parsing. In: Proceedings of ACL-2018, pp. 731–742 (2018)
Dozat, T., Manning, C.D.: Deep biaffine attention for neural dependency parsing. In: Proceedings of ICLR-2017 (2017)
Finkel, J.R., Grenager, T., Manning, C.D.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of ACL-2005, pp. 363–370 (2005)
Ghaddar, A., Langlais, P.: Robust lexical features for improved neural network named-entity recognition. arXiv preprint arXiv:1806.03489 (2018)
Gillies, G., Linton, E., Lowry, P.: Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299(5881), 355–357 (1982)
Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. In: Proceedings of LREC-2018 (2018)
Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging (2015)
Jie, Z., Lu, W.: Dependency-guided LSTM-CRF for named entity recognition. In: Proceedings of EMNLP-2019, pp. 3860–3870 (2019)
Jie, Z., Muis, A.O., Lu, W.: Efficient dependency-guided named entity recognition. In: Proceedings of AAAI-2017, pp. 3457–3465 (2017)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML-2001, pp. 282–289 (2001)
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: Proceedings of NAACL-HLT-2016, pp. 260–270 (2016)
Li, C., Qin, X., Xu, X., Yang, D., Wei, G.: Scalable graph convolutional networks with fast localized spectral filter for directed graphs. IEEE Access 8, 105634–105644 (2020)
Li, P.H., Dong, R.P., Wang, Y.S., Chou, J.C., Ma, W.Y.: Leveraging linguistic structures for named entity recognition with bidirectional recursive neural networks. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2664–2669 (2017)
Lin, B.Y., Xu, F.F., Luo, Z., Zhu, K.: Multi-channel LSTM-CRF model for emerging named entity recognition in social media. In: Proceedings of the 3rd Workshop on Noisy User-generated Text, pp. 160–165 (2017)
Ling, X., Weld, D.S.: Fine-grained entity recognition. In: Proceedings of AAAI-2012 (2012)
Luo, L., et al.: An attention-based BILSTM-CRF approach to document-level chemical named entity recognition. Bioinformatics 34(8), 1381–1388 (2018)
Ma, Y., Hao, J., Yang, Y., Li, H., Jin, J., Chen, G.: Spectral-based graph convolutional network for directed graphs. arXiv preprint arXiv:1907.08990 (2019)
Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks for semantic role labeling. In: Proceedings of EMNLP-2017, pp. 1506–1515 (2017)
Nayel, H.A., Shashirekha, H., Shindo, H., Matsumoto, Y.: Improving multi-word entity recognition for biomedical texts. arXiv preprint arXiv:1908.05691 (2019)
Nie, Y., Tian, Y., Song, Y., Ao, X., Wan, X.: Improving named entity recognition with attentive ensemble of syntactic information. arXiv preprint arXiv:2010.15466 (2020)
Oepen, S., et al.: SemEval 2015 task 18: broad-coverage semantic dependency parsing. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 915–926 (2015)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of EMNLP-2014, pp. 1532–1543 (2014)
Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of NAACL-HLT-2018, pp. 2227–2237 (2018)
Plotsky, P.M., Meaney, M.J.: Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mole. Brain Res. 18(3), 195–200 (1993)
Pradhan, S., et al.: Towards robust linguistic analysis using ontonotes. In: Proceedings of CoNLL-2013, pp. 143–152 (2013)
Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in ontonotes. In: Joint Conference on EMNLP and CoNLL-Shared Task, pp. 1–40 (2012)
Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of CoNLL-09, pp. 147–155 (2009)
Sang, E.F.T.K., Meulder, F.D.: Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In: Proceedings of CoNLL-2003, pp. 142–147 (2003)
Sasano, R., Kurohashi, S.: Japanese named entity recognition using structural natural language processing. In: Proceedings of IJCNLP-2008, pp. 607–612 (2008)
Siami-Namini, S., Tavakoli, N., Namin, A.S.: The performance of LSTM and BiLSTM in forecasting time series. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 3285–3292. IEEE (2019)
Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)
Xu, G., Meng, Y., Qiu, X., Yu, Z., Wu, X.: Sentiment analysis of comment texts based on BiLSTM. IEEE Access 7, 51522–51532 (2019)
Yaghoobian, N., Kleissl, J.: An indoor-outdoor building energy simulator to study urban modification effects on building energy use-model description and validation. Energy Build. 54, 407–417 (2012)
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-second AAAI Conference on Artificial Intelligence (2018)
Zhang, M.S.: A survey of syntactic-semantic parsing based on constituent and dependency structures. Sci. China Technol. Sci. 63(10), 1898–1920 (2020). https://doi.org/10.1007/s11431-020-1666-4
Zhang, Y., Qi, P., Manning, C.D.: Graph convolution over pruned dependency trees improves relation extraction. In: Proceedings of EMNLP-2018, pp. 2205–2215 (2018)
Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, X., Zhou, J., Wang, S., Li, X., Zheng, B., Liu, D. (2022). Linguistic Dependency Guided Graph Convolutional Networks for Named Entity Recognition. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13088. Springer, Cham. https://doi.org/10.1007/978-3-030-95408-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-95408-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95407-9
Online ISBN: 978-3-030-95408-6
eBook Packages: Computer ScienceComputer Science (R0)