Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

What Can Robotics Research Learn from Computer Vision Research?

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

Abstract

The fields of computer vision and robotics are both children of the artificial intelligence program that was spawned by the Dartmouth Conference in 1956. In recent decades the fields have diverged in terms of conferences and journals, research methodology and research rate. From a robotics perspective it seems that computer vision is in the fast lane while robotics is stuck in the slow lane. Roboticists hold a fundamental belief in the importance of experimentation but could it be that experiments are actually holding us back? Or is it that we are doing experiments poorly?.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A lexical database of English words started in 1985 to support text analysis and NLP.

  2. 2.

    https://www.unrealengine.com.

  3. 3.

    https://www.roboticvisionchallenge.org.

  4. 4.

    https://github.com/jskinn/Dataset_Synthesizer.

References

  1. Performance in ILSVRC over 2011 to 2016. https://commons.wikimedia.org/wiki/File:ImageNet_error_rate_history_(just_systems).svg

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  3. Smith, R.: Peer review: a flawed process at the heart of science and journals. J. R. Med. 99(4), 178–182 (2006). https://doi.org/10.1177/014107680609900414, pMID: 16574968

  4. Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 Year, 1000 km: the Oxford RobotCar dataset. Int. J. Robot. Res. (IJRR) 36(1), 3–15 (2017). https://doi.org/10.1177/0278364916679498

    Article  Google Scholar 

  5. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The YCB object and model set: towards common benchmarks for manipulation research. In: 2015 International Conference on Advanced Robotics (ICAR), pp. 510–517, July 2015

    Google Scholar 

  6. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  7. Hall, D., et al.: Probabilistic object detection: definition and evaluation. In: 2020 IEEE Winter Conference on Applications of Computer Vision. IEEE (2020)

    Google Scholar 

  8. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers generalize to ImageNet? arXiv preprint arXiv:1902.10811 (2019)

  9. Torralba, A., Efros, A.A., et al.: Unbiased look at dataset bias. In: CVPR, vol. 1, p. 7. Citeseer (2011)

    Google Scholar 

  10. Barbu, A., et al.: ObjectNet: a large-scale bias-controlled dataset for pushing the limits of object recognition models. In: Advances in Neural Information Processing Systems, pp. 9448–9458 (2019)

    Google Scholar 

  11. Kumar, N., et al.: Leafsnap: a computer vision system for automatic plant species identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 502–516. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_36

    Chapter  Google Scholar 

  12. Bendale, A., Boult, T.: Towards open world recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1893–1902 (2015)

    Google Scholar 

  13. Blum, H., Sarlin, P.E., Nieto, J., Siegwart, R., Cadena, C.: The fishyscapes benchmark: measuring blind spots in semantic segmentation. arXiv preprint arXiv:1904.03215 (2019)

  14. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)

    Google Scholar 

  15. Weiss, C.: Evaluation: Methods for Studying Programs and Policies. Prentice Hall, Hoboken (1998)

    Google Scholar 

  16. Pickem, D., et al.: The Robotarium: a remotely accessible swarm robotics research testbed. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1699–1706, May 2017

    Google Scholar 

  17. Skinner, J., Garg, S., Sünderhauf, N., Corke, P., Upcroft, B., Milford, M.: High-fidelity simulation for evaluating robotic vision performance. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2737–2744, October 2016

    Google Scholar 

  18. Mur-Artal, R., Montiel, J., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  21. Sünderhauf, N., et al.: The limits and potentials of deep learning for robotics. Int. J. Robot. Res. 37(4–5), 405–420 (2018)

    Article  Google Scholar 

  22. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  23. Wang, C.W., Cheng, C.A., Cheng, C.J., Hu, H.N., Chu, H.K., Sun, M.: AugPOD: augmentation-oriented probabilistic object detection. In: CVPR workshop on the Robotic Vision Probabilistic Object Detection Challenge (2019)

    Google Scholar 

  24. Ammirato, P., Berg, A.C.: A Mask-RCNN baseline for probabilistic object detection. arXiv preprint arXiv:1908.03621 (2019)

  25. Li, D., Xu, C., Liu, Y., Qin, Z.: TeamGL at ACRV robotic vision challenge 1: probabilistic object detection via staged non-suppression ensembling. In: CVPR workshop on the Robotic Vision Probabilistic Object Detection Challenge (2019)

    Google Scholar 

  26. Morrison, D., Milan, A., Antonakos, A.: Uncertainty-aware instance segmentation using dropout sampling. In: CVPR Workshop on the Robotic Vision Probabilistic Object Detection Challenge (2019)

    Google Scholar 

Download references

Acknowledgements

We thank the organizers of ISRR2019, in Hanoi, for the invitation to present a first pass of these ideas in a Distinguished Talk. This research was conducted by the Australian Research Council Centre of Excellence for Robotic Vision (project number CE140100016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Corke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corke, P., Dayoub, F., Hall, D., Skinner, J., Sünderhauf, N. (2022). What Can Robotics Research Learn from Computer Vision Research?. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_61

Download citation

Publish with us

Policies and ethics