Abstract
This article investigates the origin of numerical issues in maximum likelihood parameter estimation for Gaussian process (GP) interpolation and investigates simple but effective strategies for improving commonly used open-source software implementations. This work targets a basic problem but a host of studies, particularly in the literature of Bayesian optimization, rely on off-the-shelf GP implementations. For the conclusions of these studies to be reliable and reproducible, robust GP implementations are critical.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Code available at https://github.com/saferGPMLE.
References
Ahmed, A.R.H.A.: Studies on metaheuristics for continuous global optimization problems. Ph.D. thesis, Kyoto University (2004)
Andrianakis, I., Challenor, P.G.: The effect of the nugget on Gaussian process emulators of computer models. Comput. Stat. Data Anal. 56(12), 4215–4228 (2012)
Baudin, M., Dutfoy, A., Iooss, B., Popelin, A.L.: OpenTURNS: an industrial software for uncertainty quantification in simulation. In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification, pp. 2001–2038. Springer, Switzerland (2017)
Bect, J., Vazquez, E., et al.: STK: a small (Matlab/Octave) toolbox for Kriging. Release 2.6 (2011–2021). http://kriging.sourceforge.net
Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)
Chafekar, D., Xuan, J., Rasheed, K.: Constrained multi-objective optimization using steady state genetic algorithms. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 813–824. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_95
Curtis, F.E., Que, X.: A Quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees. Math. Program. Comput. 7(4), 399–428 (2015). https://doi.org/10.1007/s12532-015-0086-2
Deutsch, J.L., Deutsch, C.V.: Latin hypercube sampling with multidimensional uniformity. J. Stat. Plann. Inference 142(3), 763–772 (2012)
Emmerich, M.T.M., Giannakoglou, K.C., Naujoks, B.: Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006)
Erickson, C.B., Ankenman, B.E., Sanchez, S.M.: Comparison of Gaussian process modeling software. Eur. J. Oper. Res. 266(1), 179–192 (2018)
Feliot, P.: Une approche bayésienne pour l’optimisation multi-objectif sous contrainte. Ph.D. thesis, University of Paris-Saclay (2017)
Gardner, J.R., Pleiss, G., Bindel, D., Weinberger, K.Q., Wilson, A.G.: GPyTorch: blackbox matrix-matrix Gaussian process inference with GPU acceleration. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates (2018)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, USA (2015)
de G. Matthews, A.G., et al.: GPflow: a Gaussian process library using TensorFlow. J. Mach. Learn. Res., 18(40), 1–6 (2017)
Mockus, J.: On Bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.) Optimization Techniques IFIP Technical Conference Novosibirsk. July 1–7, 1974, pp. 400–404. Springer, Heidelberg (1975)
Nash, S.G.: Newton-type minimization via the Lanczos method. SIAM J. Numer. Anal. 21(4), 770–788 (1984)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5
O’Hagan, A.: Curve fitting and optimal design for prediction. J. R. Stat. Soc. B 40, 1–24 (1978)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Petit, S., Bect, J., Da Veiga, S., Feliot, P., Vazquez, E.: Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients. arXiv:2002.11543 (2020)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press, New York (1992)
Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 11, 3011–3015 (2010)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Software 51(1), 1–55 (2012)
Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. SSS, Springer, New York (2003). https://doi.org/10.1007/978-1-4757-3799-8
Sheffield machine learning group. GPy: a Gaussian process framework in Python, version 1.9.9 (2012–2020). http://github.com/SheffieldML/ GPy
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: 25th International Conference on Neural Information Processing Systems, vol. 2, pp. 2951–2959. Curran Associates Inc. (2012)
Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. In: 27th International Conference on Machine Learning (ICML), pp. 1015–1022 (2010)
Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1494-6
Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test functions and datasets (2013). http://www.sfu.ca/~ssurjano/branin.html. Accessed 13 Oct 2020
Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM (1997)
Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., Vehtari, A.: Bayesian modeling with Gaussian processes using the MATLAB toolbox GPstuff (v3.3). CoRR, abs/1206.5754 (2012)
Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University press, Cambridge (2004)
Worley, B.A.: Deterministic uncertainty analysis. Technical report, ORNL-6428, Oak Ridge National Laboratory, TN, USA (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Basak, S., Petit, S., Bect, J., Vazquez, E. (2022). Numerical Issues in Maximum Likelihood Parameter Estimation for Gaussian Process Interpolation. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-95470-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95469-7
Online ISBN: 978-3-030-95470-3
eBook Packages: Computer ScienceComputer Science (R0)