Abstract
This paper presents the preliminary results of a study on the radio frequency (RF) propagation inside the human skull at several Industrial, Scientific and Medical (ISM) and ultrawideband UWB frequencies. These frequency bands are considered as possible candidates for high data rate wireless brain telemetry. The study is conducted using a high-resolution 3D computational model of the human head. Power flow analysis is conducted to visualize propagation inside the brain for two different on-body antenna locations. Furthermore, channel attenuation between an on-body directional mini-horn antenna and an implant antenna at different depths inside the brain is evaluated. It is observed that radio frequency propagation at 914 MHz sufficiently covers the whole volume of the brain. The coverage reduces at higher frequencies, specially above 3.1 GHz. The objective of this comparative analysis is to provide some insight on the applicability of these frequencies for high data rate brain telemetry or various monitoring, and diagnostic tools.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Commercial products mentioned in this paper are merely intended to foster understanding. Their identification does not imply recommendation or endorsement by National Institute of Standards & Technology.
References
Chavarriaga, R., Cary, C., Contreras-Videl, J.L., McKinney, Z., Bianchi, L.: Standardization of neurotechnology for brain-machine interfacing: state of the art and recommendations. IEEE Open J. Eng. Med. Biol. 2, 71–73 (2021)
Song, Z., et al.: Evaluation and diagnosis of brain diseases based on non-invasive BCI. In: 2021 9th International Winter Conference on Brain-Computer Interface (BCI) (2021)
Song, L., Rahmat-Samii, Y.: An end-to-end implanted brain-machine interface antenna system performance characterizations and development. IEEE Trans. Antennas Propag. 65(7), 3399–3408 (2017). https://doi.org/10.1109/TAP.2017.2700163
Chen, W., Lee, C.W.L., Kiourti, A., Volakis, J.L.: A multi-channel passive brain implant for wireless neuropotential monitoring. IEEE J. Electromagnet. RF Microwaves Med. Biol. 2(4), 262–269 (2018)
Roldan, M., et al.: Non-invasive techniques for multimodal monitoring in traumatic brain injury: systematic review and meta-analysis. J. Neurotrauma 37(23), 2445–2453 (2020)
Manoufali, M., Bialkowski, K., Mobashsher, A.T., Mohammed, B., Abbosh, A.: In situ near-field path loss and data communication link for brain implantable medical devices using software-defined radio. IEEE Trans. Antennas Propag. 68(9), 6787–6799 (2020)
Albert, B., Zhang, J., Noyvirt, A., Setchi, R., Sjaaheim, H., Velikova, S., et al.: Automatic EEG processing for the early diagnosis of traumatic brain injury. In: 2016 World Automation Congress (WAC), pp. 1–6, July 2016
Evensen, K.B., Eide, P.: Measuring intracranial pressure by invasive, less invasive and non-invasive means, limitations and avenues for improvement. Fluids Barrierd CNS 17(1), 34 (2020)
Imaduddin, S.M., Fanelli, A., Vonberg, F., Tasker, R.C., Heldt, T.: Pseudo-Bayesian model-based noninvasive intracranial pressure estimation and tracking. IEEE Trans. Biomed. Eng. 67(6), 1604–1615 (2019)
Barone, D.G., Czosnyka, M.: Brain monitoring: do we need a hole? An update on invasive and noninvasive brain monitoring modalities. Sci. World J. (2014)
Särestöniemi, M., et al.: Detection of brain hemorrhage in white matter using analysis of radio channel characteristics. In: Alam, M.M., Hämäläinen, M., Mucchi, L., Niazi, I.K., Le Moullec, Y. (eds.) BODYNETS 2020. LNICSSITE, vol. 330, pp. 34–45. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64991-3_3
Hakala, J., Kilpijärvi, J., Särestöniemi, M., Hämäläinen, M., Myllymäki, S., Myllylä, T.: Microwave sensing of brain water – a simulation and experimental study using human brain models. IEEE Access 8, 111303–111315 (2020). https://doi.org/10.1109/ACCESS.2020.3001867
Patel, P., Sarkar, M., Nagaraj, S.: Wireless channel model of ultra wideband radio signals for implantable biomedical devices. Health Technol. 8(1–2), 97–110 (2017). https://doi.org/10.1007/s12553-017-0199-x
Särestöniemi, M., Pomalaza-Raez, C., Sayrafian, K., Iinatti, J.: In-body propagation at ISM and UWB frequencies for abdominal monitoring applications. In: IoT Health Workshop, ICC Conference, Montreal, Canada (2021)
Dove, I.: Analysis of radio propagation inside the human body for in-body localization purposes. Master thesis, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Netherlands, August 2014
Teshome, A.K., Kibret, B., Lai, D.T.H.: A Review Of Implant Communication Technology In WBAN: progress and challenges. IEEE Rev. Biomed. Eng. 12, 88–99 (2019)
Mohamed, M., Maiseli, B.J., Ai, Y., Mkocha, K., Al-Saman, A.: In-body sensor communication: trends and challenges. IEEE Electromagn. Compat. Mag. 10(2), 47–52 (2021)
Aminzadeh, R., Thielens, A., Zhadobov, M., Martens, L., Joseph, W.: WBAN channel modeling for 900 MHz and 60 GHz communications. IEEE Trans. Antennas Propag. 69(7), 4083–4092 (2021)
Hout, S., Chung, J.: Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom. IEEE Access 7, 162062–162069 (2019)
Bahrami, H., Mirbozorgi, S.A., Ameli, R., Rusch, L.A., Gosselin, B.: Flexible, polarization-diverse UWB antennas for implantable neural recording systems. IEEE Trans. Biomed. Circ. Syst. 10(1), 38–48 (2016)
Rana, B., Shim, J.-Y., Chung, J.-Y.: An implantable antenna with broadside radiation for a brain-machine interface. IEEE Sens. J. 19(20), 9200–9205 (2019)
Nguyen, D., Seo, C.: An ultra-miniaturized antenna using loading circuit method for medical implant applications. IEEE Access 9, 111890–111898 (2021)
Moradi, E., Björninen, T., Sydänheimo, L., Carmena, J.M., Rabaey, J.M., Ukkonen, L.: Measurement of wireless link for brain-machine interface systems using human-head equivalent liquid. IEEE Antennas Wirel. Propag. Lett. 12, 1307–1310 (2013)
Bahrami, H., Mirbozorgi, S.A., Rusch, L.A., Gosselin, B.: Biological channel modeling and implantable UWB antenna design for neural recording systems. IEEE Trans. Biomed. Eng. 62(1), 88–98 (2015). https://doi.org/10.1109/TBME.2014.2339837
Dassault Simulia CST Suite. https://www.3ds.com/
Orfanidis, J.: Electromagnetic Waves and Antennas (2002). Revised 2016. http://www.ece.rutgers.edu/~orfanidi/ewa/
https://www.itis.ethz.ch/virtual-population/tissue-properties/databaseM
Blauert, J., Kiourti, A.: Bio-matched horn: a novel 1–9 GHz on-body antenna for low-loss biomedical telemetry with implants. IEEE Trans. Antennas Propag. 67(8), 5054–5062 (2019)
Shang, J., Yu, Y.: An ultrawideband capsule antenna for biomedical applications. IEEE Antennas Wirel. Propag. Lett. 18(12), 2548–2551 (2019)
Acknowledgment
This work is supported by Academy of Finland 6Genesis Flagship (grant 318927) and the European Union’s Horizon 2020 programme under the Marie Sklodowska-Curie grant agreement No. 872752. Mikko Linnanmäki from ExcellAnt is acknowledged for UWB capsule antenna’s redesign based in documentation given in [29]. Mikko Parkkila and Uzman Ali from Radientum is acknowledged for mini-horn antenna re-design based on documentation in [28].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Särestöniemi, M., Pomalaza-Raez, C., Sayrafian, K., Myllylä, T., Iinatti, J. (2022). A Preliminary Study of RF Propagation for High Data Rate Brain Telemetry. In: Ur Rehman, M., Zoha, A. (eds) Body Area Networks. Smart IoT and Big Data for Intelligent Health Management. BODYNETS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 420. Springer, Cham. https://doi.org/10.1007/978-3-030-95593-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-95593-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95592-2
Online ISBN: 978-3-030-95593-9
eBook Packages: Computer ScienceComputer Science (R0)