Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Data-Centric Approach to Hepatitis C Virus Severity Prediction

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 418))

Abstract

Every year, around 1.5 million of the world population succumbs to the Hepatitis C Virus. 70% of these cases develop chronic infection and cirrhosis within the next 20 years. Because there is no effective treatment for HCV, it is critical to predicting the virus in its early stages. The study’s goal is to define a data-driven approach for accurately detecting HCV severity in patients. Our approach achieves the highest accuracy of 86.79% compared to 70.89% using the standard approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akella, A., Akella, S.: Applying machine learning to evaluate for fibrosis in chronic hepatitis C (2020). https://doi.org/10.1101/2020.11.02.20224840

  2. Akyol, K., Gultepe, Y.: A study on liver disease diagnosis based on assessing the importance of attributes. Int. J. Intell. Syst. Appl. 9(11), 1–9 (2017)

    Google Scholar 

  3. Brownlee, J.: How to calculate correlation between variables in python. Machine Learning Mastery. https://machinelearningmastery.com/how-to-use-correlation-to-understand-the-relationship-between-variables/. Updated 20 Aug 2020

  4. Brownlee, J.: How to choose a feature selection method for machine learning. Machine Learning Mastery. https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/. Updated 20 Aug 2020

  5. Brownlee, J.: Train-test split for evaluating machine learning algorithms. Machine Learning Mastery. https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/. Updated 26 Aug 2020

  6. Chen, S., Morgan, T.: The natural history of hepatitis C virus (HCV) infection. Int. J. Med. Sci. 3, 47–52 (2006)

    Article  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Diamantidis, N., Karlis, D., Giakoumakis, E.: Unsupervised stratification of crossvalidation for accuracy estimation. Artif. Intell. 116(1), 1–16 (2000)

    Article  Google Scholar 

  9. Fix, E., Hodges, J.L.: Discriminatory analysis. Nonparametric discrimination: consistency properties. Int. Statist. Rev./Rev. Int. Statist. 57(3), 238 (1989)

    Google Scholar 

  10. Getchell, J., et al.: Testing for HCV infection: an update of guidance for clinicians and laboratorians identifying current HCV infections. MMWR Morb. Mortal. Wkly Rep. 62, 362–365 (2013)

    Google Scholar 

  11. Hajarizadeh, B., Grebely, J., Dore, G.: Epidemiology and natural history of HCV infection. Nat. Rev. Gastroenterol. Hepatol. 10(9), 553–562 (2013)

    Article  Google Scholar 

  12. Harell, F.: Damage caused by classification accuracy and other discontinuous improper accuracy scoring rules. Statistical Thinking. https://www.fharrell.com/post/class-damage/. Updated 15 Nov 2020

  13. Hashem, S., et al.: Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(3), 861–868 (2018)

    Article  Google Scholar 

  14. Hoffmann, G., Bietenbeck, A., Lichtinghagen, R., Klawonn, F.: Using machine learning techniques to generate laboratory diagnostic pathways – a case study. J. Lab. Precis. Med. 3(6) (2018). https://jlpm.amegroups.com/article/view/4401

  15. Kuhn, M., Johnson, K.: Feature Engineering and Selection: A Practical Approach for Predictive Models (2019)

    Google Scholar 

  16. Li, N., et al.: Machine learning assessment for severity of liver fibrosis for chronic HBV based on physical layer with serum markers. IEEE Access 7, 124351–124365 (2019)

    Article  Google Scholar 

  17. Lichtinghagen, R., Klawonn, F., Hoffmann, G.: HCV Data Set (2020). https://archive.ics.uci.edu/ml/datasets/HCV+data

  18. Lichtinghagen, R., Pietsch, D., Bantel, H., Manns, M.P., Brand, K., Bahr, M.J.: The enhanced liver fibrosis (ELF) score: normal values, influence factors and proposed cut-off values. J. Hepatol. 59(2), 236–242 (2013)

    Article  Google Scholar 

  19. Omohundro, S.M.: Five balltree construction algorithms. Tech. Rep. (1989)

    Google Scholar 

  20. WHO: Hepatitis C. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c. Updated 26 Aug 2020

  21. Ozer, I.: Recurrent neural network based methods for hepatitis diagnosis. In: International Symposium of Scientific Research and Innovative Studies (2021)

    Google Scholar 

  22. Vishal, R.: Feature selection – correlation and p-value. Towards Data Science. https://towardsdatascience.com/feature-selection-correlation-and-p-value-da8921bfb3cf. Accessed 12 Sept 2018

  23. Suwardika, G.: Pengelompokan dan klasifikasi pada data hepatitis dengan menggunakan support vector machine (SVM), classification and regression tree (cart) dan regresi logistik biner. J. Educ. Res. Evaluat. 1(3), 183 (2017)

    Article  Google Scholar 

  24. Syafa’ah, L., Zulfatman, Z., Pakaya, I., Lestandy, M.: Comparison of machine learning classification methods in hepatitis C virus. J. Onl. Inform. 6(1), 73 (2021)

    Google Scholar 

  25. Thrift, A., El-Serag, H., Kanwal, F.: Global epidemiology and burden of HCV infection and HCV-related disease. Nat. Rev. Gastroenterol. Hepatol. 14(2), 122–132 (2017)

    Article  Google Scholar 

  26. Trishna, T.I., Emon, S.U., Ema, R.R., Sajal, G.I.H., Kundu, S., Islam, T.: Detection of hepatitis (a, b, c and e) viruses based on random forest, k-nearest and naive Bayes classifier. In: 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–7. IEEE (2019)

    Google Scholar 

  27. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B (Statist. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Arora, A., Gupta, A., Singh, P.K. (2022). Data-Centric Approach to Hepatitis C Virus Severity Prediction. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_39

Download citation

Publish with us

Policies and ethics