Abstract
Beamlines at synchrotron light source facilities are powerful scientific instruments used to image samples and observe phenomena at high spatial and temporal resolutions. Typically, these facilities are equipped only with modest compute resources for the analysis of generated experimental datasets. However, high data rate experiments can easily generate data in volumes that take days (or even weeks) to process on those local resources. To address this challenge, we present a system that unifies leadership computing and experimental facilities by enabling the automated establishment of data analysis pipelines that extend from edge data acquisition systems at synchrotron beamlines to remote computing facilities; under the covers, our system uses Globus Auth authentication to minimize user interaction, funcX to run user-defined functions on supercomputers, and Globus Flows to define and execute workflows. We describe the application of this system to ptychography, an ultra-high-resolution coherent diffraction imaging technique that can produce 100s of gigabytes to terabytes in a single experiment. When deployed on the DGX A100 ThetaGPU cluster at the Argonne Leadership Computing Facility and a microscopy beamline at the Advanced Photon Source, our system performs analysis as an experiment progresses to provide timely feedback.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
APS Upgrade. https://www.aps.anl.gov/APS-Upgrade. Accessed May 2021
Tike toolbox. https://tike.readthedocs.io/en/latest/
Advanced Photon Source, Argonne National Laboratory: Research and Engineering Highlights, APS Science (2020). https://www.aps.anl.gov/Science/APS-Science. Accessed May 2021
Allan, D., Caswell, T., Campbell, S., Rakitin, M.: Bluesky’s ahead: a multi-facility collaboration for an a la carte software project for data acquisition and management. Synchrotron Radiat. News 32(3), 19–22 (2019)
Ananthakrishnan, R., et al.: Globus platform services for data publication. In: Proceedings of the Practice and Experience on Advanced Research Computing, pp. 1–7 (2018)
APS: Early science at the upgraded Advanced Photon Source. Technical report, Advanced Photon Source, Argonne National Laboratory (2015). https://www.aps.anl.gov/APS-Facility-Documents
Argonne National Laboratory: Braid: Data Flow Automation for Scalable and FAIR Science. https://github.com/ANL-Braid/Flows. Accessed Jun 2021
Argonne National Laboratory: Advanced Photon Source, An Office of Science National User Facility. https://www.aps.anl.gov. Accessed May 2021
Aslan, S., Liu, Z., Nikitin, V., Bicer, T., Leyffer, S., Gursoy, D.: Distributed optimization with tunable learned priors for robust ptycho-tomography. arXiv preprint arXiv:2009.09498 (2020)
Aslan, S., Nikitin, V., Ching, D.J., Bicer, T., Leyffer, S., Gürsoy, D.: Joint ptycho-tomography reconstruction through alternating direction method of multipliers. Opt. Express 27(6), 9128–9143 (2019)
Basham, M., et al.: Data Analysis WorkbeNch (DAWN). J. Synchrotron Radiat. 22(3), 853–858 (2015). https://doi.org/10.1107/S1600577515002283
Batey, D.J., et al.: X-ray ptychography with a laboratory source. Phys. Rev. Lett. 126(19), 193902 (2021)
Ben-Nun, T., Gamblin, T., Hollman, D.S., Krishnan, H., Newburn, C.J.: Workflows are the new applications: challenges in performance, portability, and productivity. In: 2020 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), pp. 57–69. IEEE Computer Society, Los Alamitos (2020). https://doi.org/10.1109/P3HPC51967.2020.00011
Bicer, T., Gursoy, D., Kettimuthu, R., De Carlo, F., Agrawal, G., Foster, I.T.: Rapid tomographic image reconstruction via large-scale parallelization. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 289–302. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48096-0_23
Bicer, T., et al.: Real-time data analysis and autonomous steering of synchrotron light source experiments. In: IEEE 13th International Conference on e-Science (e-Science), pp. 59–68. IEEE (2017)
Bicer, T., Gürsoy, D., Kettimuthu, R., De Carlo, F., Foster, I.T.: Optimization of tomographic reconstruction workflows on geographically distributed resources. J. Synchrotron Radiat. 23(4), 997–1005 (2016)
Chang, H., Enfedaque, P., Marchesini, S.: Blind ptychographic phase retrieval via convergent alternating direction method of multipliers. SIAM J. Imag. Sci. 12(1), 153–185 (2019)
Chantzialexiou, G., Luckow, A., Jha, S.: Pilot-streaming: a stream processing framework for high-performance computing. In: 2018 IEEE 14th International Conference on e-Science (e-Science), pp. 177–188. IEEE (2018)
Chard, K., Tuecke, S., Foster, I.: Globus: recent enhancements and future plans. In: XSEDE16 Conference on Diversity, Big Data, and Science at Scale, pp. 1–8 (2016)
Chard, R., et al.: FuncX: a federated function serving fabric for science. In: 29th International Symposium on High-Performance Parallel and Distributed Computing, pp. 65–76 (2020)
Chen, Z., et al.: Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372(6544), 826–831 (2021). https://doi.org/10.1126/science.abg2533
Computational Science Initiative, Brookhaven National Laboratory. https://www.bnl.gov/compsci/c3d/programs/NSLS.php. Accessed Jun 2021
Deelman, E., et al.: Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 46, 17–35 (2015). https://doi.org/10.1016/j.future.2014.10.008
Deng, J., et al.: Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae. Proc. Natl. Acad. Sci. 112(8), 2314–2319 (2015)
Donatelli, J., et al.: Camera: the center for advanced mathematics for energy research applications. Synchrotron Radiat. News 28(2), 4–9 (2015)
Dong, Z., et al.: High-performance multi-mode ptychography reconstruction on distributed GPUs. In: 2018 New York Scientific Data Summit (NYSDS), pp. 1–5 (2018). https://doi.org/10.1109/NYSDS.2018.8538964
Enders, B., et al.: Cross-facility science with the superfacility project at LBNL, pp. 1–7 (2020). https://doi.org/10.1109/XLOOP51963.2020.00006
Enfedaque, P., Chang, H., Enders, B., Shapiro, D., Marchesini, S.: High performance partial coherent X-ray ptychography. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11536, pp. 46–59. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22734-0_4
Hammer, M., Yoshii, K., Miceli, A.: Strategies for on-chip digital data compression for X-ray pixel detectors. J. Instrum. 16(01), P01025 (2021)
Hidayetoğlu, M., et al.: MemXCT: memory-centric X-ray CT reconstruction with massive parallelization. In: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–56 (2019)
Hidayetoglu, M., et al.: Petascale XCT: 3D image reconstruction with hierarchical communications on multi-GPU nodes. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 510–522. IEEE Computer Society (2020)
Holler, M., et al.: X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. Sci. Rep. 4(1), 1–5 (2014)
Huang, P., Du, M., Hammer, M., Miceli, A., Jacobsen, C.: Fast digital lossy compression for X-ray ptychographic data. J. Synchrotron Radiat. 28(1), 292–300 (2021)
Intelligence Advanced Research Projects Activity: Rapid Analysis of Various Emerging Nanoelectronics. https://www.iarpa.gov/index.php/research-programs/raven. Accessed May 2021
Jesse, S., et al.: Big data analytics for scanning transmission electron microscopy ptychography. Sci. Rep. 6(1), 1–8 (2016)
Kalinin, S.V., et al.: Big, deep, and smart data in scanning probe microscopy (2016)
Klein, M., Martinasso, M., Leong, S.H., Alam, S.R.: Interactive supercomputing for experimental data-driven workflows. In: Juckeland, G., Chandrasekaran, S. (eds.) HUST/SE-HER/WIHPC - 2019. CCIS, vol. 1190, pp. 164–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44728-1_10
Liu, Z., Bicer, T., Kettimuthu, R., Foster, I.: Deep learning accelerated light source experiments. In: 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS), pp. 20–28. IEEE (2019)
Liu, Z., Bicer, T., Kettimuthu, R., Gursoy, D., De Carlo, F., Foster, I.: TomoGAN: low-dose synchrotron X-ray tomography with generative adversarial networks: discussion. JOSA A 37(3), 422–434 (2020)
Marchesini, S., et al.: SHARP: a distributed GPU-based ptychographic solver. J. Appl. Crystallogr. 49(4), 1245–1252 (2016)
Nashed, Y.S.G., Vine, D.J., Peterka, T., Deng, J., Ross, R., Jacobsen, C.: Parallel ptychographic reconstruction. Opt. Express 22(26), 32082–32097 (2014)
Naughton, T., et al.: Software framework for federated science instruments. In: Nichols, J., Verastegui, B., Maccabe, A.B., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds.) SMC 2020. CCIS, vol. 1315, pp. 189–203. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63393-6_13
Nikitin, V., et al.: Photon-limited ptychography of 3D objects via Bayesian reconstruction. OSA Continuum 2(10), 2948–2968 (2019)
Ossyra, J.R., Sedova, A., Baker, M.B., Smith, J.C.: Highly interactive, steered scientific workflows on HPC systems: optimizing design solutions. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds.) ISC High Performance 2019. LNCS, vol. 11887, pp. 514–527. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34356-9_39
Pandolfi, R.J., et al.: Xi-cam: a versatile interface for data visualization and analysis. J. Synchrotron Radiat. 25(4), 1261–1270 (2018). https://doi.org/10.1107/S1600577518005787
Peterka, T., Goodell, D., Ross, R., Shen, H.W., Thakur, R.: A configurable algorithm for parallel image-compositing applications. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–10. IEEE (2009)
Pfeiffer, F.: X-ray ptychography. Nat. Photonics 12(1), 9–17 (2018)
Salim, M., Uram, T., Childers, J.T., Vishwanath, V., Papka, M.: Balsam: near real-time experimental data analysis on supercomputers. In: 2019 IEEE/ACM 1st Annual Workshop on Large-scale Experiment-in-the-Loop Computing (XLOOP), pp. 26–31 (2019). https://doi.org/10.1109/XLOOP49562.2019.00010
Shapiro, D.A., et al.: Ptychographic imaging of nano-materials at the advanced light source with the nanosurveyor instrument. In: Journal of Physics: Conference Series, vol. 849, p. 012028. IOP Publishing (2017)
da Silva, R.F., et al.: Workflows community summit: bringing the scientific workflows community together. In: Workflows Community Summit: Bringing the Scientific Workflows Community Together (WorkflowsRI). Zenodo (2021)
Somnath, S., et al.: Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging. Adv. Struct. Chem. Imag. 4(1), 1–10 (2018). https://doi.org/10.1186/s40679-018-0052-y
Tuecke, S., et al.: Globus Auth: a research identity and access management platform. In: 12th International Conference on e-Science, pp. 203–212. IEEE (2016)
Turilli, M., Balasubramanian, V., Merzky, A., Paraskevakos, I., Jha, S.: Middleware building blocks for workflow systems. Comput. Sci. Eng. 21(4), 62–75 (2019)
Ushizima, D.M., et al.: Ideal: images across domains, experiments, algorithms and learning. JOM 68(11), 2963–2972 (2016)
Venkatakrishnan, S.V., et al.: Robust X-ray phase ptycho-tomography. IEEE Signal Process. Lett. 23(7), 944–948 (2016)
Venkatakrishnan, S., Mohan, K.A., Ziabari, A.K., Bouman, C.A.: Algorithm-driven advances for scientific CT instruments: from model-based to deep learning-based approaches. arXiv preprint arXiv:2104.08228 (2021)
Vine, D.J., et al.: Simultaneous X-ray fluorescence and ptychographic microscopy of Cyclotella meneghiniana. Opt. Express 20(16), 18287–18296 (2012)
Wang, C., et al.: Deploying the Big Data Science Center at the Shanghai Synchrotron Radiation Facility: the first superfacility platform in China. Mach. Learn.: Sci. Technol. 2(3), 035003 (2021)
Wang, X., et al.: Consensus equilibrium framework for super-resolution and extreme-scale CT reconstruction. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2019. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3295500.3356142
Wilke, R., et al.: Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction. Opt. Express 20(17), 19232–19254 (2012)
Wolstencroft, K., et al.: The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucl. Acids Res. 41, W557–W561 (2013). p. gkt328
Wu, Z., Bicer, T., Liu, Z., De Andrade, V., Zhu, Y., Foster, I.T.: Deep learning-based low-dose tomography reconstruction with hybrid-dose measurements. arXiv preprint arXiv:2009.13589 (2020)
Yu, X., Bicer, T., Kettimuthu, R., Foster, I.: Topology-aware optimizations for multi-GPU ptychographic image reconstruction. In: International Conference on Supercomputing, ICS 2021, pp. 354–366. ACM (2021)
Yu, X., Nikitin, V., Ching, D.J., Aslan, S., Gursoy, D., Bicer, T.: Scalable and accurate multi-GPU based image reconstruction of large-scale ptychography data (2021)
Ziabari, A., et al.: Beam hardening artifact reduction in X-ray CT reconstruction of 3D printed metal parts leveraging deep learning and cad models. In: ASME International Mechanical Engineering Congress and Exposition, vol. 84492, p. V02BT02A043. American Society of Mechanical Engineers (2020)
Acknowledgments
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences and Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. This research used resources of the Argonne Leadership Computing Facility and Advanced Photon Source, which are U.S. Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Argonne National Laboratory under the same contract. Authors acknowledge ASCR funded Braid project at Argonne National Laboratory for the workflow system research and development activities. Authors also acknowledge Junjing Deng, Yudong Yao, Yi Jiang, Jeffrey Klug, Nick Sirica, and Jeff Nguyen from Argonne National Laboratory for providing the experimental data. This work is partially supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via contract D2019-1903270004. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Bicer, T. et al. (2022). High-Performance Ptychographic Reconstruction with Federated Facilities. In: Nichols, J., et al. Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation. SMC 2021. Communications in Computer and Information Science, vol 1512. Springer, Cham. https://doi.org/10.1007/978-3-030-96498-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-96498-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96497-9
Online ISBN: 978-3-030-96498-6
eBook Packages: Computer ScienceComputer Science (R0)