Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Overview of Explainable Artificial Intelligence for Cyber Security

  • Chapter
  • First Online:
Explainable Artificial Intelligence for Cyber Security

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1025))

Abstract

The rapid development of the Internet, various form of host and network attack have emerged, to detect and recognize different categories of attack Intrusion Detection System (IDS) have deployed as a defensive tool to detect attacks. However IDS based on manual and traditional techniques as signatures of known attacks and deviation of normal activity have become obsolete in the field of cyber security. Recently Artificial Intelligent (AI) especially Machine Learning (ML) and Deep Learning (DL) techniques are applied in IDS to construct a model which can be able to detect variety of attacks in real time. This work aims to provide an overview of various type of IDS, AI especially their two branches ML and DL. We also explain the importance of their conjunction in cyber security. Furthermore the different public dataset and various metrics used to analyze, compared and evaluate a ML and DL techniques for Intrusion Detection has been presented. Finally a series of discussion showed how AI enforce the effectiveness of cyber security. At the end of this chapter the different challenges of application of AI in Cyber Security are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://medium.com/cuelogic-technologies/evaluation-of-machine-learning-algorithms-for-intrusion-detection-system last accessed 2020/06/25.

References

  1. A. Kartit, Une nouvelle approche de détection d’intrusions et étude des problèmes liés au déploiement de politiques de sécurité dans les réseaux informatiques (2011)

    Google Scholar 

  2. J.-M. Percher, B. Jouga, Détection d’intrusions dans les réseaux Ad hoc, Projet (2003)

    Google Scholar 

  3. S. Roschke, F. Cheng, Meinel, Intrusion detection in the cloud (2009)

    Google Scholar 

  4. A. Bakshi, Y.B. Dujodwala, Securing cloud from DDOS attacks using intrusion detection system in virtual machine (2010)

    Google Scholar 

  5. S.N. Dhage, B.B. Meshram, R. Rawat, S. Padawe, M. Paingaokar, A. Misra, Intrusion detection system in cloud computing environment (2011)

    Google Scholar 

  6. T. Alharkan, P. Martin, IDSaaS: intrusion detection system as a service in public clouds (2012)

    Google Scholar 

  7. C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, M. Rajarajan, A survey of intrusion detection techniques in Cloud (2013)

    Google Scholar 

  8. M. Ficco, L. Tasquier, R. Aversa, Intrusion detection in cloud computing (2013)

    Google Scholar 

  9. A. Patel, M. Taghavi, K. Bakhtiyari, J. Celestino Ju´ nior, An intrusion detection and prevention system in cloud computing: a systematic review (2013)

    Google Scholar 

  10. M. Jouini, L. Ben Arfa Rabai, Surveying and analyzing security problems in cloud computing environments (2014)

    Google Scholar 

  11. E. Vasilomanolakis, S. Karuppayah, M. Muhlh ¨ Auser, M. Fischer, Taxonomy and survey of collaborative intrusion detection (2015)

    Google Scholar 

  12. A. Mohiuddin, M. Abdun Naser, J. Hu, A survey of network anomaly detection techniques (2016)

    Google Scholar 

  13. S. Singh, Y.-S. Jeong, et J. Hyuk park, A survey on cloud computing security: issues, threats, and solutions (2016)

    Google Scholar 

  14. A. Chiba, N. Abghour, K. Moussaid, A. El omri, M. Rida, A cooperative and hybrid network intrusion detection framework in cloud computing based on snort and optimized back propagation neural network (2016)

    Google Scholar 

  15. M.S. Dildar, N. Khan, J. Bin Abdullah, A. Shahid Khan, Effective way to defend the hypervisor attacks in cloud computing (2017)

    Google Scholar 

  16. P. Parrend, J. Navarro, F. Guigou, A. Deruyver, P. Collet, Foundations and applications of artificial Intelligence for zero-day and multi-step attack detection (2018)

    Google Scholar 

  17. P. Mishra, E.S. Pilli, V. Varadharajan, U. Tupakula, Intrusion detection techniques in cloud environment: a survey (2017)

    Google Scholar 

  18. D. C. Modi, B. Borisaniya, H. Patel, A. Patel, M. Rajarajan, A survey of intrusion detection techniques in Cloud (2012)

    Google Scholar 

  19. R. Heenan, N. Moradpoor, A survey of intrusion detection system technologies (2016)

    Google Scholar 

  20. B.B. Zarpelão, M.R. Sanches, C.T. Kawakani, S.C. de Alvarenga, A survey of intrusion detection in internet of things (2017)

    Google Scholar 

  21. M. Elmubarak, A. Karrar, N. Hassan, Implementation Hybrid (NIDS) System using Anomaly Holtwinter Algorithm and signature based scheme (2019)

    Google Scholar 

  22. P. Dixit, S. Silakari, Deep learning algorithms for cybersecurity applications: a technological and status review (2020)

    Google Scholar 

  23. Q. Wang, P. Lu, Research on application of artificial intelligence in computer network technology (2018)

    Google Scholar 

  24. M.G. da Silva Neto, D.G. Gomes, Network intrusion detection systems design: a machine learning approach (2017)

    Google Scholar 

  25. A.L. Buczak, E. Guven, A survey of data mining and machine learning methods for cyber security intrusion detection (2016)

    Google Scholar 

  26. D. Ucci, L. Aniello, R. Baldoni, Survey of machine learning techniques for malware analysis (2018)

    Google Scholar 

  27. N. Moustafa, J. Hu, J. Slay, A holistic review of network anomaly detection systems: a comprehensive survey (2018)

    Google Scholar 

  28. R. Ahmad, I. Alsmadi, Machine learning approaches to IoT security: a systematic literature review (2021)

    Google Scholar 

  29. R. Boutaba et al., A comprehensive survey on machine learning for networking: evolution, applications and research opportunities (2018)

    Google Scholar 

  30. R. Ahamed et al., Real-time big data processing for anomaly detection: a survey (2018)

    Google Scholar 

  31. M.-J. Kang, J.-W. Kang, Intrusion detection system using deep neural network for in-vehicle network security (2016)

    Google Scholar 

  32. T. Dash, A study on intrusion detection using neural networks trained with evolutionary algorithms (2015)

    Google Scholar 

  33. I. Benmessahel, K. Xie, M. Chellal, T. Semong, A new evolutionary neural networks based on intrusion detection systems using locust swarm optimization (2018)

    Google Scholar 

  34. K. Siddique, Z. Akhtar, F.A. Khan, Y. Kim, KDD cup 99 data sets: a perspective on the role of data sets in network intrusion detection research (2019)

    Google Scholar 

  35. A. Thakkar, R. Lohiya, A review of the advancement in intrusion detection datasets (2020)

    Google Scholar 

  36. B. Hu, J. Wang, Y. Zhu, T. Yang, Dynamic deep forest: an ensemble classification method for network intrusion detection (2019)

    Google Scholar 

  37. M. Gao, L. Ma, H. Liu, Z. Zhang, Z. Ning, J. Xu, Malicious network traffic detection based on deep neural networks and association analysis (2020)

    Google Scholar 

  38. D. Kwon, H. Kim, J. Kim, S.C. Suh, I. Kim, K.J. Kim, A survey of deep learning-based network anomaly detection (2017)

    Google Scholar 

  39. Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, F. Ahmad, Network intrusion detection system: A systematic study of machine learning and deep learning ap)proaches (2020.

    Google Scholar 

  40. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey (2009)

    Google Scholar 

  41. M.H. Bhuyan, D.K. Bhattacharyya, J.K. Kalita, Network anomaly detection: methods, systems and tools (2014)

    Google Scholar 

  42. K. Shaukat et al., Performance comparison and current challenges of using machine learning techniques in cybersecurity (2020)

    Google Scholar 

  43. C. Yin, Y. Zhu, J. Fei, X. He, A deep learning approach for intrusion detection using recurrent neural networks (2017)

    Google Scholar 

  44. W. Laftah Al-Yaseen, Z. Ali Othman, Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system (2017)

    Google Scholar 

  45. C. Yin, A deep learning approach for intrusion detection using recurrent neural networks (2017)

    Google Scholar 

  46. K. Sydney Mambwe, A deep learning method with filter based feature engineering for wireless IDS (2019)

    Google Scholar 

  47. G. Wang, J. Hao, J. Ma, L. Huang, A new approach to intrusion detection using Artificial Neural Networks and fuzzy clustering. Expert Syst. Appl. 37(9), Article no 9 (2010). https://doi.org/10.1016/j.eswa.2010.02.102.

  48. S. Mohammadi, Cyber intrusion detection by combined feature selection algorithm (2018)

    Google Scholar 

  49. A. Faour, P. Leray, C. Foll, Réseaux bayésiens pour le filtrage d’alarmes dans les systèmes de détection d’intrusions, in EGC (Ateliers) (2005), pp. 69–72

    Google Scholar 

  50. M. Gao, L. Ma, H. Liu, Z. Zhang, Z. Ning, J. Ma, Malicious network traffic detection based on deep neural networks and association analysis (2020)

    Google Scholar 

  51. M.G. da Silva Neto, Network intrusion detection systems design: a machine learning approach (2017)

    Google Scholar 

  52. W. Qingjun, L. Peng, Research on application of artificial intelligence in computer network technology (2018)

    Google Scholar 

  53. T. Geethapriya, S. Chawla, Towards deep-learning-driven intrusion detection for the internet of things (2019)

    Google Scholar 

  54. L. Yun, The individual identification method of wireless device based on dimensionality reduction and machine learning (2017)

    Google Scholar 

  55. N. Thanh Van, T.N. Thinh, L. Thanh Sach, A combination of temporal sequence learning and data description for anomaly based NIDS|Kopernio (2019). https://kopernio.com/viewer?doi=10.5121%2Fijnsa.2019.11307&token=WzE5OTA3MTQsIjEwLjUxMjEvaWpuc2EuMjAxOS4xMTMwNyJd.qACLFwWBHQahUczAeY2nVpAJAAI (consulté le avr. 24, 2020)

  56. A. Javaid, Q. Niyaz, W. Sun, M. Alam, A deep learning approach for network intrusion detection system, in Présenté à 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), New York City, United States (2016). https://doi.org/10.4108/eai.3-12-2015.2262516.

  57. M.A. Ambusaidi, H. Xiangjian, N. Priyadarsi, T. Zhiyuan, Building an intrusion detection system using a filter-based feature selection algorithm (2016)

    Google Scholar 

  58. I. Sharafaldin, A. Habibi Lashkar, A.A. Ghorbani, Toward generating a new intrusion detection dataset and intrusion traffic characterization (2018)

    Google Scholar 

  59. M. Zolanvari, M.A. Teixeira, L. Gupta, K.M. Khan, R. Jain, Machine learning network vulnerability analysis of industrial (2019)

    Google Scholar 

  60. A. Amouri, V.T. Alaparthy, S.D. Morgera, A machine learning based intrusion detection system for mobile internet of things (2020)

    Google Scholar 

  61. N. Hoque, M.H. Bhuyan, R.C. Baishya, D.K. Bhattacharyya, J.K. Kalita, Network attacks: taxonomy, tools and systems (2014)

    Google Scholar 

  62. A.-Y. Wathiq Laftah, Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system (2017)

    Google Scholar 

  63. A. Abdulla Amin, B.I.R. Mamun, A novel SVM-kNN-PSO ensemble method for intrusion detection system (2016)

    Google Scholar 

  64. P. Ghosh, A.K. Mandal, R. Kumar, An efficient cloud network intrusion detection system, in Information Systems Design and Intelligent Applications, vol. 339, ed. by J.K. Mandal, S.C. Satapathy, M. Kumar Sanyal, P.P. Sarkar, A. Mukhopadhyay (Springer India, New Delhi, 2015), pp. 91–99. https://doi.org/10.1007/978-81-322-2250-7_10

  65. V. Gustavsson, Machine learning for a network based intrusion detection system (2019)

    Google Scholar 

  66. P. Kumar, A.A. Kumar, C. Sahayakingsly, A. Udayakumar, Analysis of intrusion detection in cyber attacks using DEEP learning neural networks (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hind Khoulimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khoulimi, H., Lahby, M., Benammar, O. (2022). An Overview of Explainable Artificial Intelligence for Cyber Security. In: Ahmed, M., Islam, S.R., Anwar, A., Moustafa, N., Pathan, AS.K. (eds) Explainable Artificial Intelligence for Cyber Security. Studies in Computational Intelligence, vol 1025. Springer, Cham. https://doi.org/10.1007/978-3-030-96630-0_2

Download citation

Publish with us

Policies and ethics