Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Few-Shot Generative Learning by Modeling Stereoscopic Priors

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13148))

  • 1694 Accesses

Abstract

Few-shot image generation, which aims to generate images from only a few images for a new category, has attracted some research interest in recent years. However, existing few-shot generation methods only focus on 2D images, ignoring 3D information. In this work, we propose a few-shot generative network which leverages 3D priors to improve the diversity and quality of generated images. Inspired by classic graphics rendering pipelines, we unravel the image generation process into three factors: shape, viewpoint and texture. This disentangled representation enables us to make the most of both 3D and 2D information in few-shot generation. To be specific, by changing the viewpoint and extracting textures from different real images, we can generate various new images even in data-scarce settings. Extensive experiments show the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, A.X., et al.: Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  2. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NeurIPS (2017)

    Google Scholar 

  3. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  4. Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: ICCV (2019)

    Google Scholar 

  5. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  6. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018)

    Google Scholar 

  7. Miyato, T., Koyama, M.: cGANs with projection discriminator. In: ICLR (2018)

    Google Scholar 

  8. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  9. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: learning a generative model from a single natural image. In: ICCV (2019)

    Google Scholar 

  10. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In: NeurIPS (2016)

    Google Scholar 

  11. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: ICCV (2019)

    Google Scholar 

  12. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  13. Zhu, J.Y., et al.: Visual object networks: image generation with disentangled 3D representations. In: NeurIPS (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyu Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 533 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wang, Q., Zhang, D. (2022). Few-Shot Generative Learning by Modeling Stereoscopic Priors. In: Shen, H., et al. Parallel and Distributed Computing, Applications and Technologies. PDCAT 2021. Lecture Notes in Computer Science(), vol 13148. Springer, Cham. https://doi.org/10.1007/978-3-030-96772-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96772-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96771-0

  • Online ISBN: 978-3-030-96772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics