Abstract
There are many ways machine learning and big data analytics are used in the fight against the COVID-19 pandemic, including predictions, risk management, diagnostics, and prevention. This study focuses on predicting COVID-19 patient shielding—identifying and protecting patients who are clinically extremely vulnerable from coronavirus. This study focuses on techniques used for the multi-label classification of medical text. Using the information published by the United Kingdom NHS and the World Health Organisation, we present a novel approach to predicting COVID-19 patient shielding as a multi-label classification problem. We use publicly available, de-identified ICU medical text data for our experiments. The labels are derived from the published COVID-19 patient shielding data. We present an extensive comparison across 12 multi-label classifiers from the simple binary relevance to neural networks and the most recent transformers. To the best of our knowledge this is the first comprehensive study, where such a range of multi-label classifiers for medical text are considered. We highlight the benefits of various approaches, and argue that, for the task at hand, both predictive accuracy and processing time are essential.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The code to recreate the experiments and evaluations described in this paper is accessible at: https://github.com/vithyayogarajan/COVID-19-Patient-Shielding.
References
Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P.B., Joe, B., Cheng, X.: Artificial intelligence and machine learning to fight COVID-19. Physiol. Genomics 52(4), 200–202 (2020)
Alsentzer, E., et al.: Publicly available clinical BERT embeddings. In: Proceedings of the 2nd Clinical Natural Language Processing Workshop, pp. 72–78 (2019)
Beltagy, I., Peters, M., Cohan, A.: Longformer: the long-document transformer. arXiv preprint arXiv:2004.05150 (2020)
Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8) (2014)
Clift, A.K., et al.: Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ 371 (2020). https://doi.org/10.1136/bmj.m3731. https://www.bmj.com/content/371/bmj.m3731
Cosgriff, C.V., Ebner, D.K., Celi, L.A.: Data sharing in the era of COVID-19. Lancet Digit. Health 2(5), e224 (2020)
Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: ACL (2019)
Delafiori, J., et al.: Covid-19 automated diagnosis and risk assessment through metabolomics and machine learning. Anal. Chem. 93(4), 2471–2479 (2021)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)
Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5
Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)
Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. arXiv preprint arXiv:2007.15779 (2020)
Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains and tasks. In: Proceedings of ACL (2020)
Ioannidis, J.P.: Precision shielding for covid-19: metrics of assessment and feasibility of deployment. BMJ Glob. Health 6(1), e004614 (2021)
Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)
Khan, A.I., Shah, J.L., Bhat, M.M.: CoroNet: a deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput. Methods Programs Biomed. 196, 105581 (2020)
Khanday, A.M.U.D., Rabani, S.T., Khan, Q.R., Rouf, N., Din, M.M.U.: Machine learning based approaches for detecting covid-19 using clinical text data. Int. J. Inf. Technol. 12(3), 731–739 (2020)
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
López-Úbeda, P., DÃaz-Galiano, M.C., MartÃn-Noguerol, T., Luna, A., Ureña-López, L.A., MartÃn-Valdivia, M.T.: Covid-19 detection in radiological text reports integrating entity recognition. Comput. Biol. Med. 127, 104066 (2020)
Moons, E., Khanna, A., Akkasi, A., Moens, M.F.: A comparison of deep learning methods for ICD coding of clinical records. Appl. Sci. 10(15), 5262 (2020)
Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1. ACL, New Orleans (2018)
Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., Gloaguen, R.: Covid-19 pandemic prediction for Hungary; a hybrid machine learning approach. Mathematics 8(6), 890 (2020)
Pollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G., Badawi, O.: The eICU collaborative research database, a freely available multi-center database for critical care research. Sci. Data 5, 180178 (2018)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)
Read, J., Reutemann, P., Pfahringer, B., Holmes, G.: MEKA: a multi-label/multi-target extension to WEKA. J. Mach. Learn. Res. 17(21), 1–5 (2016). http://jmlr.org/papers/v17/12-164.html
Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 5998–6008 (2017)
Yogarajan, V., Gouk, H., Smith, T., Mayo, M., Pfahringer, B.: Comparing high dimensional word embeddings trained on medical text to bag-of-words for predicting medical codes. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) ACIIDS 2020. LNCS (LNAI), vol. 12033, pp. 97–108. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41964-6_9
Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B.: Seeing the whole patient: using multi-label medical text classification techniques to enhance predictions of medical codes. arXiv preprint arXiv:2004.00430 (2020)
Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B.: Transformers for multi-label classification of medical text: an empirical comparison. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds.) AIME 2021. LNCS (LNAI), vol. 12721, pp. 114–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77211-6_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B. (2022). Predicting COVID-19 Patient Shielding: A Comprehensive Study. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-97546-3_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97545-6
Online ISBN: 978-3-030-97546-3
eBook Packages: Computer ScienceComputer Science (R0)