Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Transfer Learning for Autonomous Recognition of Swarm Behaviour in UGVs

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

Abstract

Recent work has developed value functions that can recognize emergent swarming behaviour and distinguish it from random behaviour. To date, this work has been done in point-mass swarm simulations. This paper proposes a transfer learning approach that can improve the performance of a value system for recognising swarming in simulated and real robots from limited data without replicating the training. A source value function is trained on human-labelled point-mass boid data. A target tree is trained on a small amount of new domain specific data. It can recognise swarm behaviour of diverse agents not used in the original training. We test the value function on homogeneous swarms of simulated and real robots. Results show that this value function can detect swarming in at least 89% of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.coppeliarobotics.com/.

References

  1. Kolling, A., et al.: human interaction with robot swarms: a survey. IEEE Trans. Hum. Mach. Syst. 46(1), 9–26 (2016)

    Article  Google Scholar 

  2. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  3. Clark, J.B., Jacques, D.R.: Flight test results for UAVs using boid guidance algorithms. Conf. Syst. Eng. Res. 8, 232–238 (2012)

    Google Scholar 

  4. Kasmarik, K., Abpeikar, S., Khan, M.M., Khattab, N., Barlow, M., Garratt, M.: Autonomous recognition of collective behaviour in robot swarms. In: Gallagher, M., Moustafa, N., Lakshika, E. (eds.) AI 2020. LNCS (LNAI), vol. 12576, pp. 281–293. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64984-5_22

    Chapter  Google Scholar 

  5. Khan, M.M., Kasmarik, K., Barlow, M.: Autonomous detection of collective behaviours in swarms. Swarm Evol. Comput. 57, 100715 (2020)

    Google Scholar 

  6. Elgibreen, H., Aksoy, M.S.: RULES-IT: incremental transfer learning with RULES family. Front. Comp. Sci. 8(4), 537–562 (2014). https://doi.org/10.1007/s11704-014-3297-1

    Article  MathSciNet  Google Scholar 

  7. Lu, J., et al.: Transfer learning using computational intelligence: a survey. Knowl.-Based Syst. 80, 14–23 (2015)

    Article  Google Scholar 

  8. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  9. Degrave, J., et al.: Transfer learning of gaits on a quadrupedal robot. Adapt. Behav. 23(2), 69–82 (2015)

    Article  Google Scholar 

  10. Atyabi, A., Powers, D.M.: Cooperative area extension of PSO-transfer learning vs. uncertainty in a simulated swarm robotics. In: International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS (2013)

    Google Scholar 

  11. Venturini, F., et al.: Distributed reinforcement learning for flexible UAV swarm control with transfer learning capabilities. In: Proceedings of the 6th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications. Association for Computing Machinery: Toronto, Ontario, Canada. p. Article 10 (2020)

    Google Scholar 

  12. Iuzzolino, M.L., Walker, M.E., Szafir, D.: Virtual-to-real-world transfer learning for robots on wilderness trails. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)

    Google Scholar 

  13. Nguyen, T.T., Hatua, A., Sung, A.H.: Cumulative training and transfer learning for multi-robots collision-free navigation problems. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (2019)

    Google Scholar 

  14. won Lee, J., Giraud-Carrier, C.: Transfer learning in decision trees. In: 2007 International Joint Conference on Neural Networks. IEEE (2007)

    Google Scholar 

  15. Minvielle, L., et al.: Transfer learning on decision tree with class imbalance. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE (2019)

    Google Scholar 

  16. Hlynsson, H.: Transfer learning using the minimum description length principle with a decision tree application (2007)

    Google Scholar 

  17. Parvin, H., MirnabiBaboli, M., Alinejad-Rokny, H.: Proposing a classifier ensemble framework based on classifier selection and decision tree. Eng. Appl. Artif. Intell. 37, 34–42 (2015)

    Article  Google Scholar 

  18. Kuncheva, L.I.: On the optimality of Naive Bayes with dependent binary features. Pattern Recogn. Lett. 27(7), 830–837 (2006)

    Article  Google Scholar 

  19. Abe, S.: Support Vector Machines for Pattern Classification, Second Edition. Support Vector Machines for Pattern Classification, Second Edition, pp. 1–471 (2010)

    Google Scholar 

  20. Mukherjee, I., Routroy, S.: Comparing the performance of neural networks developed by using Levenberg-Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process. Expert Syst. Appl. 39(3), 2397–2407 (2012)

    Article  Google Scholar 

  21. Abpeikar, S., et al.: Swarm Behaviour Dataset on UCI Data Repository. UCI Data Repository: UCI Data Repository (2020)

    Google Scholar 

  22. Utgoff, P.E., Berkman, N.C., Clouse, J.A.: Decision tree induction based on efficient tree restructuring. Mach. Learn. 29(1), 5–44 (1997)

    Article  Google Scholar 

  23. Segev, N., et al.: Learn on source, refine on target: a model transfer learning framework with random forests. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1811–1824 (2017)

    Article  Google Scholar 

  24. Abpeikar, S., et al.: Human Perception of Swarming (Online Survey) (2019). https://unsw-swarm-survey.netlify.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Abpeikar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abpeikar, S., Kasmarik, K., Tran, P.V., Garratt, M. (2022). Transfer Learning for Autonomous Recognition of Swarm Behaviour in UGVs. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics