Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A PGAS-Based Implementation for the Parallel Minimum Spanning Tree Algorithm

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13127))

Included in the following conference series:

  • 1039 Accesses

Abstract

The minimum spanning tree is a critical problem for many applications in network analysis, communication network design, and computer science. The parallel implementation of minimum spanning tree algorithms increases the simulation performance of large graph problems using high-performance computational resources. The minimum spanning tree algorithms generally use traditional parallel programming models for distributed and shared memory systems, like Massage Passing Interface or OpenMP. Furthermore, the partitioned global address space model offers new capabilities in the form of asynchronous computations on distributed shared memory, positively affecting the performance and scalability of the algorithms. The paper aims to present a new minimum spanning tree algorithm implemented in a partitioned global address space model. The experiments with diverse parameters have been conducted to study the efficiency of the asynchronous implementation of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Astsatryan, H., Narsisian, W., Kocharyan, A., Da Costa, G., Hankel, A., Oleksiak, A.: Energy optimization methodology for e-infrastructure providers. Concurr. Comput. Pract. Exp. 29(10), e4073 (2017)

    Google Scholar 

  2. Bachan, J., et al.: UPC++: a high-performance communication framework for asynchronous computation. In: IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 963–973. IEEE (2019). https://doi.org/10.1109/IPDPS.2019.00104

  3. Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs. J. Parallel Distrib. Comput. 66(11), 1366–1378 (2006). https://doi.org/10.1016/j.jpdc.2006.06.001

    Article  MATH  Google Scholar 

  4. Bejanyan, V., Astsatryan, H.: MST PGAS algorithm (2021). https://github.com/lnikon/pgas-graph

  5. Caíno-Lores, S., Carretero, J., Nicolae, B., Yildiz, O., Peterka, T.: Toward high-performance computing and big data analytics convergence: the case of spark-DIY. IEEE Access 7, 156929–156955 (2019). https://doi.org/10.1109/ACCESS.2019.2949836

    Article  Google Scholar 

  6. Du, Z., Yin, Z., Liu, W., Bader, D.: On accelerating iterative algorithms with CUDA: a case study on conditional random fields training algorithm for biological sequence alignment. In: IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), pp. 543–548. IEEE (2010). https://doi.org/10.1109/BIBMW.2010.5703859

  7. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. (TOPLAS) 5(1), 66–77 (1983). https://doi.org/10.1145/357195.357200

    Article  MATH  Google Scholar 

  8. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956). https://doi.org/10.1090/S0002-9939-1956-0078686-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Madduri, K., Bader, D.A., Berry, J.W., Crobak, J.R.: An experimental study of a parallel shortest path algorithm for solving large-scale graph instances. In: Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 23–35. SIAM (2007). https://doi.org/10.1137/1.9781611972870.3

  10. Mazeev, A., Semenov, A., Simonov, A.: A distributed parallel algorithm for the minimum spanning tree problem. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp. 101–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67035-5_8

    Chapter  Google Scholar 

  11. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discret. Math. 233(1–3), 3–36 (2001)

    Article  Google Scholar 

  12. Olson, C.F.: Parallel algorithms for hierarchical clustering. Parallel Comput. 21(8), 1313–1325 (1995)

    Article  MathSciNet  Google Scholar 

  13. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957). https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

    Article  Google Scholar 

  14. Riedy, E.J., Meyerhenke, H., Ediger, D., Bader, D.A.: Parallel community detection for massive graphs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 286–296. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31464-3_29

    Chapter  MATH  Google Scholar 

  15. Shoukourian, Y.H., Sahakyan, V.G., Astsatryan, H.V.: E-infrastructures in Armenia: virtual research environments. In: Ninth International Conference on Computer Science and Information Technologies Revised Selected Papers, pp. 1–7. IEEE (2013). https://doi.org/10.1109/CSITechnol.2013.6710360

  16. Yang, C., Wang, Y., Owens, J.D.: Fast sparse matrix and sparse vector multiplication algorithm on the GPU. In: IEEE International Parallel and Distributed Processing Symposium Workshop, pp. 841–847. IEEE (2015). https://doi.org/10.1109/IPDPSW.2015.77

Download references

Acknowledgements

The paper is supported by the European Union’s Horizon 2020 research infrastructures programme under grant agreement No 857645, project NI4OS Europe (National Initiatives for Open Science in Europe).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bejanyan, V., Astsatryan, H. (2022). A PGAS-Based Implementation for the Parallel Minimum Spanning Tree Algorithm. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2021. Lecture Notes in Computer Science, vol 13127. Springer, Cham. https://doi.org/10.1007/978-3-030-97549-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97549-4_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97548-7

  • Online ISBN: 978-3-030-97549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics