Abstract
The minimum spanning tree is a critical problem for many applications in network analysis, communication network design, and computer science. The parallel implementation of minimum spanning tree algorithms increases the simulation performance of large graph problems using high-performance computational resources. The minimum spanning tree algorithms generally use traditional parallel programming models for distributed and shared memory systems, like Massage Passing Interface or OpenMP. Furthermore, the partitioned global address space model offers new capabilities in the form of asynchronous computations on distributed shared memory, positively affecting the performance and scalability of the algorithms. The paper aims to present a new minimum spanning tree algorithm implemented in a partitioned global address space model. The experiments with diverse parameters have been conducted to study the efficiency of the asynchronous implementation of the algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Astsatryan, H., Narsisian, W., Kocharyan, A., Da Costa, G., Hankel, A., Oleksiak, A.: Energy optimization methodology for e-infrastructure providers. Concurr. Comput. Pract. Exp. 29(10), e4073 (2017)
Bachan, J., et al.: UPC++: a high-performance communication framework for asynchronous computation. In: IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 963–973. IEEE (2019). https://doi.org/10.1109/IPDPS.2019.00104
Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs. J. Parallel Distrib. Comput. 66(11), 1366–1378 (2006). https://doi.org/10.1016/j.jpdc.2006.06.001
Bejanyan, V., Astsatryan, H.: MST PGAS algorithm (2021). https://github.com/lnikon/pgas-graph
Caíno-Lores, S., Carretero, J., Nicolae, B., Yildiz, O., Peterka, T.: Toward high-performance computing and big data analytics convergence: the case of spark-DIY. IEEE Access 7, 156929–156955 (2019). https://doi.org/10.1109/ACCESS.2019.2949836
Du, Z., Yin, Z., Liu, W., Bader, D.: On accelerating iterative algorithms with CUDA: a case study on conditional random fields training algorithm for biological sequence alignment. In: IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), pp. 543–548. IEEE (2010). https://doi.org/10.1109/BIBMW.2010.5703859
Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. (TOPLAS) 5(1), 66–77 (1983). https://doi.org/10.1145/357195.357200
Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956). https://doi.org/10.1090/S0002-9939-1956-0078686-7
Madduri, K., Bader, D.A., Berry, J.W., Crobak, J.R.: An experimental study of a parallel shortest path algorithm for solving large-scale graph instances. In: Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 23–35. SIAM (2007). https://doi.org/10.1137/1.9781611972870.3
Mazeev, A., Semenov, A., Simonov, A.: A distributed parallel algorithm for the minimum spanning tree problem. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp. 101–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67035-5_8
Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discret. Math. 233(1–3), 3–36 (2001)
Olson, C.F.: Parallel algorithms for hierarchical clustering. Parallel Comput. 21(8), 1313–1325 (1995)
Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957). https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
Riedy, E.J., Meyerhenke, H., Ediger, D., Bader, D.A.: Parallel community detection for massive graphs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 286–296. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31464-3_29
Shoukourian, Y.H., Sahakyan, V.G., Astsatryan, H.V.: E-infrastructures in Armenia: virtual research environments. In: Ninth International Conference on Computer Science and Information Technologies Revised Selected Papers, pp. 1–7. IEEE (2013). https://doi.org/10.1109/CSITechnol.2013.6710360
Yang, C., Wang, Y., Owens, J.D.: Fast sparse matrix and sparse vector multiplication algorithm on the GPU. In: IEEE International Parallel and Distributed Processing Symposium Workshop, pp. 841–847. IEEE (2015). https://doi.org/10.1109/IPDPSW.2015.77
Acknowledgements
The paper is supported by the European Union’s Horizon 2020 research infrastructures programme under grant agreement No 857645, project NI4OS Europe (National Initiatives for Open Science in Europe).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Bejanyan, V., Astsatryan, H. (2022). A PGAS-Based Implementation for the Parallel Minimum Spanning Tree Algorithm. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2021. Lecture Notes in Computer Science, vol 13127. Springer, Cham. https://doi.org/10.1007/978-3-030-97549-4_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-97549-4_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97548-7
Online ISBN: 978-3-030-97549-4
eBook Packages: Computer ScienceComputer Science (R0)