Abstract
Intervals and fuzzy numbers have been introduced to the analytic hierarchy process (AHP) reflecting the vagueness of the decision maker. In this paper, we propose a fuzzy AHP approach to multiple criteria decision analysis. First we investigate the normalized fuzzy weight vector estimation problem under a given fuzzy pairwise comparison matrix (PCM). After reviewing a previous approach to the estimation problem, we show the non-uniqueness of the normalized fuzzy weight vector associated with a consistent fuzzy PCM. Those normalized fuzzy weight vectors associated with the same consistent fuzzy PCM are at the same distance from the given PCM. Therefore, we require that all such fuzzy weight vectors should be the solutions to the estimation problem. As the previous estimation method does not satisfy this requirement, the estimation method is modified so that all such normalized fuzzy weight vectors are estimated. Then a decision analysis with all such normalized fuzzy weight vectors is proposed. The stability of the best alternative can be scrutable as the range of alternative orderings is analyzed by the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Satty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
Sugihara, K., Ishii, H., Tanaka, H.: Interval priorities in AHP by interval regression analysis. Eur. J. Oper. Res. 158(3), 745–754 (2004)
Wang, Y.-M., Chin, K.-S.: A linear goal programming priority method for fuzzy analytic hierarchy process and its applications in new product screening. Int. J. Approx. Reason. 49(2), 451–465 (2008)
Inuiguchi, M., Torisu, I.: The advantage of interval weight estimation over the conventional weight estimation in AHP in ranking alternatives. In: Huynh, V.-N., Entani, T., Jeenanunta, C., Inuiguchi, M., Yenradee, P. (eds.) IUKM 2020. LNCS (LNAI), vol. 12482, pp. 38–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62509-2_4
Wang, Y.-M., Yang, J.-B., Xu, D.-L., Chin, K.-S.: On the centroids of fuzzy numbers. Fuzzy Sets Syst. 157(7), 919–926 (2006)
Wang, Y.-M., Elhag, T.M.S.: On the normalization of interval and fuzzy weights. Fuzzy Sets Syst. 157(18), 2456–2471 (2006)
Mikhailov, L.: Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets Syst. 134(3), 365–385 (2003)
Mikhailov, L.: A fuzzy approach to deriving priorities from interval pairwise comparison judgements. Eur. J. Oper. Res. 159(3), 687–704 (2004)
Acknowledgements
This work is supported by JSPS KAKENHI Grant Number JP18H01658.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Innan, S., Inuiguchi, M. (2022). Decision Analysis with the Set of Normalized Triangular Fuzzy Weight Vectors in Fuzzy AHP. In: Honda, K., Entani, T., Ubukata, S., Huynh, VN., Inuiguchi, M. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2022. Lecture Notes in Computer Science(), vol 13199. Springer, Cham. https://doi.org/10.1007/978-3-030-98018-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-98018-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98017-7
Online ISBN: 978-3-030-98018-4
eBook Packages: Computer ScienceComputer Science (R0)