Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

PF-VTON: Toward High-Quality Parser-Free Virtual Try-On Network

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13141))

Included in the following conference series:

Abstract

Image-based virtual try-on aims to transfer a target clothes onto a person has attracted increased attention. However, the existing methods are heavily based on accurate parsing results. It remains a big challenge to generate highly-realistic try-on images without human parser. To address this issue, we propose a new Parser-Free Virtual Try-On Network (PF-VTON), which is able to synthesize high-quality try-on images without relying on human parser. Compared to prior arts, we introduce two key innovations. One is that we introduce a new twice geometric matching module, which warps the pixels of the target clothes and the features of the preliminary warped clothes to obtain the final warped clothes with realistic texture and robust alignment. The other is that we design a new U-Transformer, which is highly effective for generating highly-realistic images in try-on synthesis. Extensive experiments show that our system outperforms the state-of-the-art methods both qualitatively and quantitatively.

This work is supported by Science Foundation of Hubei under Grant No. 2014CFB764 and Department of Education of the Hubei Province of China under Grant No. Q20131608.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  2. Bhardwaj, R., Majumder, N., Poria, S., Hovy, E.: More identifiable yet equally performant transformers for text classification. arXiv preprint arXiv:2106.01269 (2021)

  3. Brouet, R., Sheffer, A., Boissieux, L., Cani, M.P.: Design preserving garment transfer (2012)

    Google Scholar 

  4. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  5. Chang, Y., et al.: Dp-vton: toward detail-preserving image-based virtual try-on network. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2295–2299. IEEE (2021)

    Google Scholar 

  6. Chen, W., et al.: Synthesizing training images for boosting human 3D pose estimation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 479–488. IEEE (2016)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Ge, Y., Song, Y., Zhang, R., Ge, C., Liu, W., Luo, P.: Parser-free virtual try-on via distilling appearance flows. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8485–8493 (2021)

    Google Scholar 

  9. Gong, K., Liang, X., Zhang, D., Shen, X., Lin, L.: Look into person: self-supervised structure-sensitive learning and a new benchmark for human parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 932–940 (2017)

    Google Scholar 

  10. Guan, P., Reiss, L., Hirshberg, D.A., Weiss, A., Black, M.J.: Drape: dressing any person. ACM Trans. Graph. (TOG) 31(4), 1–10 (2012)

    Article  Google Scholar 

  11. Han, X., Hu, X., Huang, W., Scott, M.R.: Clothflow: a flow-based model for clothed person generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10471–10480 (2019)

    Google Scholar 

  12. Han, X., Wu, Z., Jiang, Y.G., Davis, L.S.: Learning fashion compatibility with bidirectional LSTMs. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1078–1086 (2017)

    Google Scholar 

  13. Han, X., Wu, Z., Wu, Z., Yu, R., Davis, L.S.: Viton: an image-based virtual try-on network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7543–7552 (2018)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems. pp. 6626–6637 (2017)

    Google Scholar 

  16. Hsiao, W.L., Katsman, I., Wu, C.Y., Parikh, D., Grauman, K.: Fashion++: minimal edits for outfit improvement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5047–5056 (2019)

    Google Scholar 

  17. Issenhuth, T., Mary, J., Calauzènes, C.: Do not mask what you do not need to mask: a parser-free virtual try-on. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 619–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_37

    Chapter  Google Scholar 

  18. Jae Lee, H., Lee, R., Kang, M., Cho, M., Park, G.: La-viton: a network for looking-attractive virtual try-on. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Liu, J., Lu, H.: Deep fashion analysis with feature map upsampling and landmark-driven attention. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  21. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  22. Pons-Moll, G., Pujades, S., Hu, S., Black, M.J.: Clothcap: seamless 4D clothing capture and retargeting. ACM Trans. Graph. (TOG) 36(4), 1–15 (2017)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  25. Shajini, M., Ramanan, A.: An improved landmark-driven and spatial-channel attentive convolutional neural network for fashion clothes classification. Visual Comput. 37(6), 1517–1526 (2021)

    Article  Google Scholar 

  26. Shao, B., Gong, Y., Qi, W., Cao, G., Ji, J., Lin, X.: Graph-based transformer with cross-candidate verification for semantic parsing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8807–8814 (2020)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  29. Wang, B., Zheng, H., Liang, X., Chen, Y., Lin, L., Yang, M.: Toward characteristic-preserving image-based virtual try-on network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 589–604 (2018)

    Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  31. Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., Luo, P.: Towards photo-realistic virtual try-on by adaptively generating-preserving image content. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7850–7859 (2020)

    Google Scholar 

  32. Yu, R., Wang, X., Xie, X.: VTNFP: an image-based virtual try-on network with body and clothing feature preservation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10511–10520 (2019)

    Google Scholar 

  33. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, Y. et al. (2022). PF-VTON: Toward High-Quality Parser-Free Virtual Try-On Network. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13141. Springer, Cham. https://doi.org/10.1007/978-3-030-98358-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98358-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98357-4

  • Online ISBN: 978-3-030-98358-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics