Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Expressing Significant Others by Gravitation in the Ontology of Greek Mythology

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2021)

Abstract

To help close the gap between folksonomic knowledge vs. digital classical philology, based on a perceived analogy between Newtonian mechanics and evolving semantic spaces, we tested a new conceptual framework in a specific domain, the Ontology of Greek Mythology (OGM). The underlying Wikidata-based public dataset has 5377 entities with 289 types of relations, out of which 34 were used for its construction. To visualize the influence structure of a subset of 771 divine actors by other means than the force-directed placement of graph nodes, we expressed the combination of semantic relatedness plus objective vs. relative importance of these entities by their gravitational behaviour. To that end, the metaphoric equivalents of distance, mass, force, gravitational potential, and gravitational potential energy were applied, with the latter interpreted as the structuration capacity of nodes. The results were meaningful to the trained eye, but, given the very high number of contour maps and heatmaps available by our public tool, their systematic evaluation lies ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods—a survey. ACM Comput. Surv. 39(4), 10 (2007)

    Article  Google Scholar 

  2. Dudáš, M., Lohmann, S., Svátek, V., Pavlov, D.: Ontology visualization methods and tools: a survey of the state of the art. Knowl. Eng. Rev. 33 (2018)

    Google Scholar 

  3. Mikhailov, S., Petrov, M., Lantow, B.: Ontology visualization: a systematic literature analysis. In: BIR Workshops (2016)

    Google Scholar 

  4. Gómez-Romero, J., Molina-Solana, M., Oehmichen, A., Guo, Y.: Visualizing large knowledge graphs: a performance analysis. Futur. Gener. Comput. Syst. 89, 224–238 (2018)

    Article  Google Scholar 

  5. Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. arXiv preprint arXiv:1601.08059 (2016)

  6. Bikakis, N., Liagouris, J., Krommyda, M., Papastefanatos, G., Sellis, T.: GraphVizdb: a scalable platform for interactive large graph visualization. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 1342–1345. IEEE (2016)

    Google Scholar 

  7. Ghorbel, F., Hamdi, F., Ellouze, N., Métais, E., Gargouri, F.: Visualizing large-scale linked data with memo graph. Procedia Comput. Sci. 112, 854–863 (2017)

    Article  Google Scholar 

  8. Le, D.H.: UFO: a tool for unifying biomedical ontology-based semantic similarity calculation, enrichment analysis and visualization. PloS One 15(7), e0235670 (2020)

    Article  Google Scholar 

  9. Nguyen, Q.H., Le, D.H.: Similarity calculation, enrichment analysis, and ontology visualization of biomedical ontologies using UFO. Curr. Protoc. 1(4), e115 (2021)

    Article  Google Scholar 

  10. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  11. Kobourov, S.G.: Spring embedders and force directed graph drawing algorithms. arXiv preprint arXiv:1201.3011 (2012)

  12. Huang, Z., Wu, J., Zhu, W., Wang, Z., Mehrotra, S., Zhao, Y.: Visualizing complex networks by leveraging community structures. Phys. A Statist. Mechan. Appl. 565, 125506 (2021)

    Article  Google Scholar 

  13. Basole, R.C., Accenture, A.I.: Mining logomaps for ecosystem intelligence. In: HICSS, pp. 1–10 (2021)

    Google Scholar 

  14. Nararatwong, R., Kertkeidkachorn, N., Ichise, R.: Knowledge graph visualization: challenges, framework, and implementation. In: 2020 IEEE 3rd International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 174–178. IEEE (2020)

    Google Scholar 

  15. Paijmans, H.: Gravity wells of meaning: detecting information‐rich passages in scientific texts. J. Document. 53(5), 520–536 (1997)

    Article  Google Scholar 

  16. Ma, L.L., Ma, C., Zhang, H.F., Wang, B.H.: Identifying influential spreaders in complex networks based on gravity formula. Physica A 451, 205–212 (2016)

    Article  Google Scholar 

  17. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of Internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. 104(27), 11150–11154 (2007)

    Article  Google Scholar 

  18. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  19. Garas, A., Schweitzer, F., Havlin, S.: A k-shell decomposition method for weighted networks. New J. Phys. 14(8), 083030 (2012)

    Article  Google Scholar 

  20. Zeng, A., Zhang, C.J.: Ranking spreaders by decomposing complex networks. Phys. Lett. A 377(14), 1031–1035 (2013)

    Article  Google Scholar 

  21. Darányi, S., Wittek, P., Konstantinidis, K., Papadopoulos, S., Kontopoulos, E.: A Physical Metaphor to Study Semantic Drift. arXiv preprint. arXiv:1608.01298 (2016)

  22. Pedersen, T., Pakhomov, S.V., Patwardhan, S., Chute, C.G.: Measures of semantic similarity and relatedness in the biomedical domain. J. Biomed. Inform. 40(3), 288–299 (2007)

    Article  Google Scholar 

  23. Pastor-Sánchez, J.-A., Kontopoulos, E., Saorín, T., Bebis, T., Darányi, S.: Greek mythology as a knowledge graph: from chaos to zeus and beyond. Seman. Web J. Rev. (2021)

    Google Scholar 

  24. Syamili, C., Rekha, R.V.: Developing an ontology for Greek mythology. Electron. Lib. 36(1) (2018)

    Google Scholar 

  25. Wittek, P., Darányi, S., Kontopoulos, E., Moysiadis, T., Kompatsiaris, I.: Monitoring term drift based on semantic consistency in an evolving vector field. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2015)

    Google Scholar 

  26. Mai, G., Janowicz, K., Yan, B.: Support and centrality: learning weights for knowledge graph embedding models. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018. LNCS (LNAI), vol. 11313, pp. 212–227. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03667-6_14

    Chapter  Google Scholar 

  27. Brank, J., Leban, G., Grobelnik, M.: Semantic annotation of documents based on Wikipedia concepts. Informatica 42(1), 23–31 (2018)

    Google Scholar 

  28. Hamdam, H., Ganascia, J.G.: Graph Centrality Measures for Boosting Popularity-Based Entity Linking. arXiv. arXiv:1712.00044 (2017)

  29. Kerényi, K.: Die Mythologie der Griechen: Götter, Menschen und Heroen. Klett-Cotta, Stuttgart (1997)

    Google Scholar 

  30. Berti, M. (ed): Digital classical philology. In: Ancient Greek and Latin in the Digital Revolution. De Gruyter, Berlin (2019)

    Google Scholar 

  31. Zgoll, C.: Tractatus Mythologicus. De Gruyter, Berlin (2019)

    Book  Google Scholar 

  32. Zgoll, A., Zgoll, Ch. (eds): Mythische Sphärenwechsel: Methodisch neue Zugänge zu Antiken Mythen in Orient und Okzident. De Gruyter, Berlin (2020)

    Google Scholar 

  33. McConnell, J., Hall, E.: Ancient Greek Myth in World Fiction Since 1989. Bloomsbury, London (2016)

    Google Scholar 

  34. Versnel, H.S.: Coping With the Gods: Wayward Readings in Greek Theology. Brill, Leiden (2011)

    Google Scholar 

  35. Frenzel, E.: Motive der Weltliteratur: Ein Lexikon dichtungsgeschichtlicher Längsschnitte. Alfred Kröner Verlag, Stuttgart (1976)

    Google Scholar 

  36. Frenzel, E.: Stoffe der Weltliteratur: Ein Lexikon dichtungsgeschichtlicher Längsschnitte. Alfred Kröner Verlag, Stuttgart (1970)

    Google Scholar 

  37. Seigneuret, J.C. (ed.): Dictionary of Literary Themes and Motifs, vols. 1–2. Greenwood Press, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios Kontopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pastor-Sánchez, JA., Darányi, S., Kontopoulos, E. (2022). Expressing Significant Others by Gravitation in the Ontology of Greek Mythology. In: Garoufallou, E., Ovalle-Perandones, MA., Vlachidis, A. (eds) Metadata and Semantic Research. MTSR 2021. Communications in Computer and Information Science, vol 1537. Springer, Cham. https://doi.org/10.1007/978-3-030-98876-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98876-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98875-3

  • Online ISBN: 978-3-030-98876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics