Abstract
The development of technology has made agriculture more and more efficient, being more productive with less resources consumed, such as water and fertilizers. Our objective is to develop more efficient measurement systems for agricultural applications, e.g. to be more intelligent measurement and data processing and to make forecasts, helping decision-making. In this work, an architecture based on distributed edge-fog-cloud computing is presented. Through low power consumption and wide-area communications, this architecture can be used for measurement of climate, energy, and soil variables to achieve more productive crops.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- AI:
-
Artificial intelligence
- AMI:
-
Advanced measurement infrastructure
- CAN:
-
Campus area network
- DC:
-
Data concentrator
- DL:
-
Data lake
- DER:
-
Distributed energy resource
- GSM:
-
Global system for mobile communications
- IoT:
-
Internet of Things
- LAN:
-
Local area network
- LPWAN:
-
Low power wide area network
- MAN:
-
Metropolitan area network
- SBC:
-
Simple card computer
- SM:
-
Smart meter
- WAN:
-
Wide
- WP:
-
Water pumps
- WSAN:
-
Wireless sensor and actuator network
References
Guerrero-Ibañez, J.A., et al.: SGreenH-IoT: Plataforma IoT para Agricultura de Precisión. In: CISCI 2017 - Decima Sexta Conferencia Iberoamericana en Sistemas, Cibernetica e Informatica, Decimo Cuarto Simposium Iberoamericano en Educacion, Cibernetica e Informatica, SIECI 2017 - Proceedings, pp. 315–320 (2017)
Ragab, R., Prudhomme, C.: Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosyst. Eng. 81(1), 3–34 (2002)
Sales, N., Remedios, O., Arsenio, A.: Wireless sensor and actuator system for smart irrigation on the cloud. In: Proceedings of the IEEE World Forum on Internet of Things, WF-IoT 2015, pp. 693–698. Institute of Electrical and Electronics Engineers Inc. (2015)
Khriji, S., El Houssaini, D., Kammoun, I., Kanoun, O.: Precision irrigation: an IoT-enabled wireless sensor network for smart irrigation systems. In: Hamrita, T.K. (ed.) Women in Precision Agriculture. WES, pp. 107–129. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49244-1_6
Delegación SADER Querétaro: Convocatoria Componente Investigación, Innovación y Desarrollo Tecnológico Agrícola. Programa de Fomento a la Agricultura (2019). https://rb.gy/f6incd
Srivastava, P., Bajaj, M., Rana, A.: Overview of ESP8266 Wi-Fi module based smart irrigation system using IOT. In: Proceedings of the 4th IEEE International Conference on Advances in Electrical and Electronics, Information, Communication and Bioinformatics, AEEICB 2018. Institute of Electrical and Electronics Engineers Inc. (2018)
Agrovoltaic. https://agrovoltaic.org/
Tajwar, M., et al.: Design and implementation of an IoT based automated agricultural monitoring and control system. In: 1st International Conference on Robotics, Electrical and Signal Processing Techniques, ICREST 2019, pp. 13–16. Institute of Electrical and Electronics Engineers Inc. (2019)
Munir, M., et al.: Intelligent and smart irrigation system using edge computing and IoT. Complexity 2021, 1–16 (2021)
Sophocleous, M., Karkotis, A., Georgiou, J.: A versatile, stand-alone, in-field sensor node for implementation in precision agriculture. IEEE J. Emerg. Sel. Top. Circ. Syst. 11(3), 449–457 (2021)
Shanmuga, J.P., et al.: A survey on LoRa networking: research problems, current solutions, and open issues. IEEE Commun. Surv. Tut. 22(1), 371–388 (2020)
Lloret, J., et al.: Cluster-based communication protocol and architecture for a wastewater purification system intended for irrigation. IEEE Access 9, 142374–142389 (2021)
Di Renzone, G., et al.: LoRaWAN underground to aboveground data transmission performances for different soil compositions. IEEE Trans. Instrum. Meas. 70(2021), 1–13 (2021)
Willockx, B., Herteleer, B., Cappelle, J.: Theoretical potential of agrovoltaic systems in Europe: a preliminary study with winter wheat. In: 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), pp. 0996–1001 (2020)
John, R., Mahto, V.: Agrovoltaics farming design and simulation. In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), pp. 2625–2629 (2021)
Huang, C., et al.: Smart meter pinging and reading through AMI two-way communication networks to monitor grid edge devices and DERs. IEEE Trans. Smart Grid (2021)
Alharbi, H., Aldossary, M.: Energy-efficient edge-fog-cloud architecture for IoT-based smart agriculture environment. IEEE Access 9(2021), 110480–110492 (2021)
Taneja, M., et al.: Connected cows: utilizing fog and cloud analytics toward data-driven decisions for smart dairy farming. IEEE IoT Mag. 2(4), 32–37 (2019)
Habibi, M., et al.: A comprehensive survey of RAN architectures toward 5G mobile communication system. IEEE Access 7, 70371–70421 (2019)
Liya, M., Arjun, D.: A survey of LPWAN technology in agricultural field. In: 2020 4th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 313–317 (2020)
Valecce, G., et al.: NB-IoT for smart agriculture: experiments from the field. In: 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 71–75 (2020)
Chew, K., et al.: Fog-based WSAN for agriculture in developing countries. In: 2021 IEEE International Conference on Smart Internet of Things (SmartIoT), pp. 289–293 (2021)
Pressman, R., Maxim, B.: Software Engineering: A Practitioner’s Approach, 9th edn. McGraw Hill (2020). ISBN 9781259872976
Acknowledgments
The authors thank the Tecnológico Nacional de México for partial financial support through grant 13537-22.P and the British Council Newton Fund grant 540323618.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Olivares-Rojas, J.C., Gutiérrez-Gnecchi, J.A., Yang, W., Reyes-Archundia, E., Téllez-Anguiano, A.C. (2022). Smart Metering Architecture for Agriculture Applications. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 451. Springer, Cham. https://doi.org/10.1007/978-3-030-99619-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-99619-2_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99618-5
Online ISBN: 978-3-030-99619-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)