Abstract
Readability is a core component of information retrieval (IR) tools as the complexity of a resource directly affects its relevance: a resource is only of use if the user can comprehend it. Even so, the link between readability and IR is often overlooked. As a step towards advancing knowledge on the influence of readability on IR, we focus on Web search for children. We explore how traditional formulas–which are simple, efficient, and portable–fare when applied to estimating the readability of Web resources for children written in English. We then present a formula well-suited for readability estimation of child-friendly Web resources. Lastly, we empirically show that readability can sway children’s information access. Outcomes from this work reveal that: (i) for Web resources targeting children, a simple formula suffices as long as it considers contemporary terminology and audience requirements, and (ii) instead of turning to Flesch-Kincaid–a popular formula–the use of the “right” formula can shape Web search tools to best serve children. The work we present herein builds on three pillars: Audience, Application, and Expertise. It serves as a blueprint to place readability estimation methods that best apply to and inform IR applications serving varied audiences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Grade levels according to the United States’ educational system.
- 2.
The script used for analysis purposes, along with the Spache-Allen itself can be found at https://github.com/BSU-CAST/ecir22-readability.
- 3.
A set of learning outcomes to inform curriculum for schools in the United States.
- 4.
- 5.
We use KORSCE’s implementation made available by the authors.
- 6.
In Scenario 4, FK’s performance is not unexpected as KORSCE is optimized for FK.
References
https://github.com/cdimascio/py-readability-metrics/blob/master/readability/data/spache_easy.txt
Albright, J., de Guzman, C., Acebo, P., Paiva, D., Faulkner, M., Swanson, J.: Readability of patient education materials: implications for clinical practice. Appl. Nurs. Res. 9(3), 139–143 (1996)
Alharthi, H., Inkpen, D.: Study of linguistic features incorporated in a literary book recommender system. In: ACM/SIGAPP SAC, pp. 1027–1034 (2019)
Aliannejadi, M., Zamani, H., Crestani, F., Croft, W.B.: Asking clarifying questions in open-domain information-seeking conversations. In: ACM SIGIR, pp. 475–484 (2019)
Allan, J., Croft, B., Moffat, A., Sanderson, M.: Frontiers, challenges, and opportunities for information retrieval: report from SWIRL 2012. In: ACM SIGIR Forum, vol. 46, pp. 2–32 (2012)
Allen, G., et al.: Engage!: co-designing search engine result pages to foster interactions. In: ACM IDC, pp. 583–587 (2021)
Allen, G., Wright, K.L., Fails, J.A., Kennington, C., Pera, M.S.: Casting a net: supporting teachers with search technology. arXiv preprint arXiv:2105.03456 (2021)
Amendum, S.J., Conradi, K., Hiebert, E.: Does text complexity matter in the elementary grades? A research synthesis of text difficulty and elementary students’ reading fluency and comprehension. Educ. Psychol. Rev. 30(1), 121–151 (2018)
Amendum, S.J., Conradi, K., Liebfreund, M.D.: The push for more challenging texts: an analysis of early readers’ rate, accuracy, and comprehension. Read. Psychol. 37(4), 570–600 (2016)
Anderson, J.: Lix and Rix: variations on a little-known readability index. J. Read. 26(6), 490–496 (1983)
Antunes, H., Lopes, C.T.: Readability of web content. In: CISTI, pp. 1–4 (2019)
Anuyah, O., Milton, A., Green, M., Pera, M.S.: An empirical analysis of search engines’ response to web search queries associated with the classroom setting. Aslib J. Inf. Manage. 72(1), 88–111 (2020)
Begeny, J.C., Greene, D.J.: Can readability formulas be used to successfully gauge difficulty of reading materials? Psychol. Sch. 51(2), 198–215 (2014)
Benjamin, R.G.: Reconstructing readability: recent developments and recommendations in the analysis of text difficulty. Educ. Psychol. Rev. 24(1), 63–88 (2012)
Bilal, D.: Comparing Google’s readability of search results to the Flesch readability formulae: a preliminary analysis on children’s search queries. Am. Soc. Inf. Sci. Technol. 50(1), 1–9 (2013)
Bilal, D., Huang, L.-M.: Readability and word complexity of SERPs snippets and web pages on children’s search queries: Google vs Bing. Aslib J. Inf. Manage. 71(2), 241–259 (2019)
Bilal, D., Kirby, J.: Differences and similarities in information seeking: children and adults as web users. IPM 38(5), 649–670 (2002)
Björnsson, C.H.: Läsbarhet: hur skall man som författare nå fram till läsarna? Bokförlaget Liber (1968)
Bruce, B., Rubin, A., Starr, K.: Why readability formulas fail. IEEE Trans. Prof. Commun. 1, 50–52 (1981)
Chall, J.S., Dale, E.: Readability Revisited: The New Dale-Chall Readability Formula. Brookline Books (1995)
Chatterjee, P., Damevski, K., Kraft, N.A., Pollock, L.: Automatically identifying the quality of developer chats for post hoc use. ACM TOSEM 30(4), 1–28 (2021)
Coleman, M., Liau, T.L.: A computer readability formula designed for machine scoring. J. Appl. Psychol. 60(2), 283 (1975)
Collins-Thompson, K., Bennett, P.N., White, R.W., De La Chica, S., Sontag, D.: Personalizing web search results by reading level. In: ACM CIKM, pp. 403–412 (2011)
Crossley, S.A., Skalicky, S., Dascalu, M.: Moving beyond classic readability formulas: new methods and new models. J. Res. Read. 42(3–4), 541–561 (2019)
Dale, E., Chall, J.S.: A formula for predicting readability: instructions. Educ. Res. Bull. 27, 37–54 (1948)
D’Alessandro, D.M., Kingsley, P., Johnson-West, J.: The readability of pediatric patient education materials on the world wide web. Arch. Pediatr. Adolesc. Med. 155(7), 807–812 (2001)
Dalip, D.H., Gonçalves, M.A., Cristo, M., Calado, P.: Exploiting user feedback to learn to rank answers in q&a forums: a case study with stack overflow. In: ACM SIGIR, pp. 543–552 (2013)
Dragovic, N., Madrazo Azpiazu, I., Pera, M.S.: “Is Sven Seven?” A search intent module for children. In: ACM SIGIR, pp. 885–888 (2016)
DuBay, W.H.: Smart Language: Readers, Readability, and the Grading of Text (2007)
Eickhoff, C., et al.: EmSe: initial evaluation of a child-friendly medical search system. In: IIiX, pp. 282–285 (2012)
Eickhoff, C., de Vries, A.P., Collins-Thompson, K.: Copulas for information retrieval. In: ACM SIGIR, pp. 663–672 (2013)
Ekstrand, M.D., Wright, K.L., Pera, M.S.: Enhancing classroom instruction with online news. Aslib J. Inf. Manage. 72(5), 725–744 (2020)
El-Haj, M., Rayson, P.: Osman–a novel Arabic readability metric. In: LREC, pp. 250–255 (2016)
Ermakova, L., et al.: Text simplification for scientific information access. In: ECIR (2021)
François, T., Miltsakaki, E.: Do NLP and machine learning improve traditional readability formulas? In: 1st Workshop on Predicting and Improving Text Readability for Target Reader Populations, pp. 49–57 (2012)
Garcia-Febo, L., Hustad, A., Rösch, H., Sturges, P., Vallotton, A.: IFLA code of ethics for librarians and other information workers. https://www.ifla.org/publications/ifla-code-of-ethics-for-librarians-and-other-information-workers-short-version-/
Gonzalez-Dios, I., Aranzabe, M.J., de Ilarraza, A.D., Salaberri, H.: Simple or complex? Assessing the readability of Basque Texts. In: COLING, pp. 334–344 (2014)
Gunning, R.: The fog index after twenty years. J. Bus. Commun. 6(2), 3–13 (1969)
Gwizdka, J., Bilal, D.: Analysis of children’s queries and click behavior on ranked results and their thought processes in Google search. In: CHIIR, pp. 377–380 (2017)
Common Core Stat Standards Initiative: Appendix B: text exemplars and sample performance tasks (2020). http://www.corestandards.org/assets/Appendix_B.pdf
Kincaid, J.P., Fishburne, R.P., Jr., Rogers, R.L., Chissom, B.S.: Derivation of new readability formulas (automated readability index, fog count and Flesch reading ease formula) for navy enlisted personnel. Technical report, Naval Technical Training Command Millington TN Research Branch (1975)
Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621 (1952)
Kuperman, V., Stadthagen-Gonzalez, H., Brysbaert, M.: Age-of-acquisition ratings for 30,000 English words. Behav. Res. Meth. 44(4), 978–990 (2012)
Lazel, I.: Level correlation chart (2021). https://www.readinga-z.com/learninga-z-levels/level-correlation-chart/. Accessed 18 Jan 2021
Lazel, I.: Reading A-Z: the online reading program with downloadable books to print and assemble (2021). https://www.readinga-z.com/. Accessed 18 Jan 2021
Le, L.T., Shah, C., Choi, E.: Evaluating the quality of educational answers in community question-answering. In: IEEE/ACM JCDL, pp. 129–138 (2016)
Lin, C.Y., Wu, Y.-H., Chen, A.L.P.: Selecting the most helpful answers in online health question answering communities. J. Intell. Inf. Syst. 57(2), 271–293 (2021)
Liu, L., Koutrika, G., Wu, S.: LearningAssistant: a novel learning resource recommendation system. In: IEEE ICDE, pp. 1424–1427 (2015)
Madrazo Azpiazu, I.: Towards multipurpose readability assessment. Master’s thesis, Boise State University (2016). https://scholarworks.boisestate.edu/td/1210/
Madrazo Azpiazu, I., Dragovic, N., Anuyah, O., Pera, M.S.: Looking for the movie Seven or Sven from the movie frozen? A multi-perspective strategy for recommending queries for children. In: ACM CHIIR, pp. 92–101 (2018)
Madrazo Azpiazu, I., Dragovic, N., Pera, M.S.: Finding, understanding and learning: making information discovery tasks useful for children and teachers. In: SAL Workshop co-located with ACM SIGIR (2016)
Madrazo Azpiazu, I., Dragovic, N., Pera, M.S., Fails, J.A.: Online searching and learning: YUM and other search tools for children and teachers. Inf. Retr. J. 20(5), 524–545 (2017)
Madrazo Azpiazu, I., Pera, M.S.: Multiattentive recurrent neural network architecture for multilingual readability assessment. TACL 7, 421–436 (2019)
Madrazo Azpiazu, I., Pera, M.S.: An analysis of transfer learning methods for multilingual readability assessment. In: Adjunct Publication of the 28th ACM UMAP, pp. 95–100 (2020)
Mc Laughlin, G.H.: Smog grading-a new readability formula. J. Read. 12(8), 639–646 (1969)
Meng, C., Chen, M., Mao, J., Neville, J.: ReadNet: a hierarchical transformer framework for web article readability analysis. In: Jose, J.M., et al. (eds.) Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part I, pp. 33–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_3
Milton, A., Allen, G., Pera, M.S.: To infinity and beyond! Accessibility is the future for kids’ search engines. arXiv preprint arXiv:2106.07813 (2021)
Milton, A., Anuya, O., Spear, L., Wright, K.L., Pera, M.S.: A ranking strategy to promote resources supporting the classroom environment. In: IEEE/WIC/ACM WI-IAT, pp. 121–128 (2020)
Miltsakaki, E., Troutt, A.: Read-X: automatic evaluation of reading difficulty of web text. In: E-Learn, pp. 7280–7286. AACE (2007)
Mohammadi, H., Khasteh, S.H.: Text as environment: a deep reinforcement learning text readability assessment model. arXiv preprint arXiv:1912.05957 (2019)
Newsela: Newsela article corpos (2016). https://newsela.com/data
Ngada, O., Haskins, B.: Fake news detection using content-based features and machine learning. In: IEEE CSDE, pp. 1–6 (2020)
Otto, C., et al.: Predicting knowledge gain during web search based on multimedia resource consumption. In: AIED, pp. 318–330 (2021)
Pera, M.S., Ng, Y.K.: Automating readers’ advisory to make book recommendations for k-12 readers. In: ACM RecSys, pp. 9–16 (2014)
Ramiro, C., Srinivasan, M., Malt, B.C., Xu, Y.: Algorithms in the historical emergence of word senses. Nat. Acad. Sci. 115(10), 2323–2328 (2018)
Reed, D.K., Kershaw-Herrera, S.: An examination of text complexity as characterized by readability and cohesion. J. Exp. Educ. 84(1), 75–97 (2016)
Roy, N., Torre, M.V., Gadiraju, U., Maxwell, D., Hauff, C.: Note the highlight: incorporating active reading tools in a search as learning environment. In: ACM CHIIR, pp. 229–238 (2021)
Saptono, R., Mine, T.: Time-based sampling methods for detecting helpful reviews. In: IEEE/WIC/ACM WI-IAT, pp. 508–513 (2020)
Spache, G.D.: The Spache readability formula. In: Good Reading for Poor Readers, pp. 195–207 (1974)
Spaulding, S.: A Spanish readability formula. Mod. Lang. J. 40(8), 433–441 (1956)
Szabo, S., Sinclair, B.: STAAR reading passages: the readability is too high. Schooling 3(1), 1–14 (2012)
Szabo, S., Sinclair, B.B.: Readability of the STAAR test is still misaligned. Schooling 10(1), 1–12 (2019)
Tahir, M., et al.: Evaluation of quality and readability of online health information on high blood pressure using DISCERN and Flesch-Kincaid tools. Appl. Sci. 10(9), 3214 (2020)
Taranova, A., Braschler, M.: Textual complexity as an indicator of document relevance. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12657, pp. 410–417. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_42
Vajjala, S., Meurers, D.: On improving the accuracy of readability classification using insights from second language acquisition. In: 7th Workshop on Building Educational Applications using NLP, pp. 163–173 (2012)
Vajjala, S., Meurers, D.: On the applicability of readability models to web texts. In: 2nd Workshop on Predicting and Improving Text Readability for Target Reader Populations, pp. 59–68 (2013)
Wang, H.X.: Developing and testing readability measurements for second language learners. Ph.D. thesis, Queensland University of Technology (2016)
Westervelf, T.: Wizenoze search white paper (2021). https://cdn.theewf.org/uploads/pdf/Wizenoze-white-paper.pdf
Wizenoze: Wizenoze readability index (2021). http://www.wizenoze.com
Wojciechowski, A., Gorzynski, K.: A method for measuring similarity of books: a step towards an objective recommender system for readers. In: Vetulani, Z., Uszkoreit, H., Kubis, M. (eds.) LTC 2013. LNCS (LNAI), vol. 9561, pp. 161–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43808-5_13
Wong, K., Levi, J.R.: Readability of pediatric otolaryngology information by children’s hospitals and academic institutions. Laryngoscope 127(4), E138–E144 (2017)
Xia, M., Kochmar, E., Briscoe, T.: Text readability assessment for second language learners. arXiv preprint arXiv:1906.07580 (2019)
Yu, C.H., Miller, R.C.: Enhancing web page readability for non-native readers. In: CHI 2010, pp. 2523–2532 (2010)
Acknowledgments
Work partially funded by NSF Award #1763649. The authors would like to thank Dr. Ion Madrazo Azpiazu and Dr. Michael D. Ekstrand for their valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Allen, G., Milton, A., Wright, K.L., Fails, J., Kennington, C., Pera, M.S. (2022). Supercalifragilisticexpialidocious: Why Using the “Right” Readability Formula in Children’s Web Search Matters. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13185. Springer, Cham. https://doi.org/10.1007/978-3-030-99736-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-99736-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99735-9
Online ISBN: 978-3-030-99736-6
eBook Packages: Computer ScienceComputer Science (R0)