Abstract
With the proliferation of fake news in the last few years, especially during the COVID-19 period, combating the spread of misinformation has become an urgent need. Although automated fact-checking systems were proposed recently, they leave much to be desired in terms of accuracy and explainability. Therefore, involving humans during verification could make the process much easier and more reliable. In this work, we propose an automated approach to detect claims that have been already manually-verified by professional fact-checkers. Our proposed approach uses recent powerful BERT variants as point-wise rerankers. Additionally, we study the impact of using different fields of the verified claim during training and inference phases. Experimental results show that our proposed pipeline outperforms the state-of-the-art approaches on two English and one Arabic datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
We specifically use STSb-MPNet and Paraphrase-MPNet.
- 4.
- 5.
- 6.
References
Abdul-Mageed, M., Elmadany, A., Nagoudi, E.M.B.: ARBERT & MARBERT: deep bidirectional transformers for Arabic. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7088–7105, August 2021
Ali, Z.S., Mansour, W., Elsayed, T., Al-Ali, A.: AraFacts: the first large Arabic dataset of naturally occurring claims. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 231–236 (2021)
Amati, G., Amodeo, G., Bianchi, M., Gaibisso, C., Gambosi, G.: FUB, IASI-CNR and university of “Tor Vergata” at TREC 2008 blog track. In: The Seventeenth Text REtrieval Conference, TREC 2008, US (2008)
Antoun, W., Baly, F., Hajj, H.: AraBERT: Transformer-based model for Arabic language understanding. In: Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection, pp. 9–15 (2020)
Barrón-Cedeño, A., et al.: Overview of CheckThat! 2020 – automatic identification and verification of claims in social media. In: Proceedings of the 11th International Conference of the CLEF Association: Experimental IR Meets Multilinguality, Multimodality, and Interaction, CLEF 2020, pp. 215–236 (2020)
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57(1), 289–300 (1995)
Bouziane, M., Perrin, H., Cluzeau, A., Mardas, J., Sadeq, A.: Buster.AI at CheckThat! 2020: insights and recommendations to improve fact-checking. In: Cappellato et al. [8] (2020)
Cappellato, L., Eickhoff, C., Ferro, N., Névéol, A. (eds.): CLEF 2020 Working Notes. CEUR Workshop Proceedings. CEUR-WS.org (2020)
Chernyavskiy, A., Ilvovsky, D., Nakov, P.: Aschern at CheckThat! 2021: lambda-calculus of fact-checked claims. In: Faggioli et al. [12] (2021)
Chowdhury, S.A., Abdelali, A., Darwish, K., Soon-Gyo, J., Salminen, J., Jansen, B.J.: Improving Arabic text categorization using transformer training diversification. In: Proceedings of the Fifth Arabic Natural Language Processing Workshop, pp. 226–236 (2020)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186 (2019)
Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.): CLEF 2021 Working Notes. Working Notes of CLEF 2021-Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings. CEUR-WS.org (2021)
Farha, I.A., Magdy, W.: Benchmarking transformer-based language models for Arabic sentiment and sarcasm detection. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 21–31 (2021)
Google: Fact check. https://toolbox.google.com/factcheck/explorer
Gunther, R., Beck, P.A., Nisbet, E.C.: Fake news did have a significant impact on the vote in the 2016 election: original full-length version with methodological appendix, Ohio State University, Columbus, OH. Unpublished manuscript (2018)
Jelinek, F.: Interpolated estimation of Markov source parameters from sparse data. In: Proceedings of the Workshop on Pattern Recognition in Practice, 1980 (1980)
Kazemi, A., Garimella, K., Gaffney, D., Hale, S.: Claim matching beyond English to scale global fact-checking. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, pp. 4504–4517 (2021)
Lan, W., Chen, Y., Xu, W., Ritter, A.: GigaBERT: zero-shot transfer learning from English to Arabic. In: Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP) (2020)
Lavrenko, V., Croft, W.B.: Relevance based language models. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 120–127 (2001)
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Macdonald, C., Tonellotto, N.: Declarative experimentation in information retrieval using PyTerrier. In: Proceedings of ICTIR 2020 (2020)
McDonald, T., et al.: The university of sheffield at CheckThat! 2020: claim identification and verification on Twitter. In: Cappellato et al. [8] (2020)
Nakov, P., et al.: Automated fact-checking for assisting human fact-checkers. In: International Joint Conferences on Artificial Intelligence (2021)
Nakov, P., et al.: Overview of the CLEF–2021 CheckThat! Lab on detecting check-worthy claims, previously fact-checked claims, and fake news. In: Candan, K.S., Ionescu, B., Goeuriot, L., Larsen, B., Müller, H., Joly, A., Maistro, M., Piroi, F., Faggioli, G., Ferro, N. (eds.) CLEF 2021. LNCS, vol. 12880, pp. 264–291. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85251-1_19
Nogueira, R., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking with BERT. arXiv:abs/1910.14424 (2019)
Passaro, L., Bondielli, A., Lenci, A., Marcelloni, F.: UNIPI-NLE at CheckThat! 2020: approaching fact checking from a sentence similarity perspective through the lens of transformers. In: Cappellato et al. [8] (2020)
Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)
Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. 3(4), 333–389 (2009)
Safaya, A.: Arabic-ALBERT, August 2020. https://doi.org/10.5281/zenodo.4718724
Safaya, A., Abdullatif, M., Yuret, D.: Kuisail at SemEval-2020 task 12: BERT-CNN for offensive speech identification in social media. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 2054–2059 (2020)
Shaar, S., Alam, F., Martino, G.D.S., Nakov, P.: The role of context in detecting previously fact-checked claims. arXiv preprint arXiv:2104.07423 (2021)
Shaar, S., Babulkov, N., Da San Martino, G., Nakov, P.: That is a known lie: detecting previously fact-checked claims. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3607–3618 (2020)
Shaar, S., et al.: Overview of the CLEF-2021 CheckThat! lab task 2 on detecting previously fact-checked claims in tweets and political debates. In: Faggioli et al. [12] (2021)
Sheng, Q., Cao, J., Zhang, X., Li, X., Zhong, L.: Article reranking by memory-enhanced key sentence matching for detecting previously fact-checked claims. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, pp. 5468–5481 (2021)
Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)
Snowdon, R.: Meta reverse image search. https://github.com/vivithemage/mrisa (2017)
Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: MPNet: masked and permuted pre-training for language understanding. In: Advances in Neural Information Processing Systems, vol. 33, pp. 16857–16867. Curran Associates, Inc. (2020)
Tchechmedjiev, A., et al.: ClaimsKG: a knowledge graph of fact-checked claims. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 309–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_20
Thorne, J., Vlachos, A.: Automated fact checking: task formulations, methods and future directions. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3346–3359 (2018)
Vo, N., Lee, K.: Where Are the Facts? Searching for fact-checked information to alleviate the spread of fake news. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7717–7731 (2020)
Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)
Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: MiniLM: deep self-attention distillation for task-agnostic compression of pre-trained transformers. In: Advances in Neural Information Processing Systems, vol. 33, pp. 5776–5788. Curran Associates, Inc. (2020)
Acknowledgments
This work was made possible by NPRP grant# NPRP11S-1204-170060 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mansour, W., Elsayed, T., Al-Ali, A. (2022). Did I See It Before? Detecting Previously-Checked Claims over Twitter. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13185. Springer, Cham. https://doi.org/10.1007/978-3-030-99736-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-99736-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99735-9
Online ISBN: 978-3-030-99736-6
eBook Packages: Computer ScienceComputer Science (R0)