Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CollaborateCas: Popularity Prediction of Information Cascades Based on Collaborative Graph Attention Networks

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13245))

Included in the following conference series:

  • 3535 Accesses

Abstract

In recent years, with the prosperity of online social media platforms, cascade popularity prediction has attracted much attention from both academia and industry. Due to the recent advance in graph representation learning technologies, many state-of-the-art prediction methods utilize graph neural network to predict the cascade popularity. However, a significant disadvantage shared by these methods is that they treat each cascade independently, while the collaborations among different cascades are ignored. Therefore, in this paper we propose a novel deep learning model CollaborateCas which utilizes collaborations among different cascades to learn node and cascade embeddings directly and simultaneously. To this end, we first construct a heterogeneous user-message bipartite graph where different cascades are indirectly connected by common participants. To further capture temporal interdependence among users within each cascade, we construct homogeneous cascade graphs where temporal information is modeled as edge features. Experimental results on two real-world datasets show that our approach achieves significantly higher prediction accuracy compared with state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  2. Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: Deephawkes: bridging the gap between prediction and understanding of information cascades. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1149–1158 (2017)

    Google Scholar 

  3. Cao, Q., Shen, H., Gao, J., Wei, B., Cheng, X.: Popularity prediction on social platforms with coupled graph neural networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 70–78 (2020)

    Google Scholar 

  4. Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T., Zhang, F.: Information diffusion prediction via recurrent cascades convolution. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 770–781. IEEE (2019)

    Google Scholar 

  5. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29, 3844–3852 (2016)

    Google Scholar 

  7. Feng, X., Zhao, Q., Liu, Z.: Prediction of information cascades via content and structure proximity preserved graph level embedding. Inf. Sci. 560, 424–440 (2021)

    Article  MathSciNet  Google Scholar 

  8. Gehrke J, Ginsparg P, K.J.: Overview of the 2003 KDD cup. In: Acm Sigkdd Explor. Newslett. 5(2), 149–151 (2003)

    Google Scholar 

  9. Gong, Q., et al.: Cross-site prediction on social influence for cold-start users in online social networks. ACM Trans. Web (TWEB) 15(2), 1–23 (2021)

    Article  Google Scholar 

  10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  11. Jiang, B., Lu, Z., Li, N., Wu, J., Yi, F., Han, D.: Retweeting prediction using matrix factorization with binomial distribution and contextual information. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11447, pp. 121–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18579-4_8

    Chapter  Google Scholar 

  12. Li, C., Ma, J., Guo, X., Mei, Q.: Deepcas: an end-to-end predictor of information cascades. In: Proceedings of the 26th International Conference on World Wide Web, pp. 577–586 (2017)

    Google Scholar 

  13. Myers, S.A., Leskovec, J.: Clash of the contagions: cooperation and competition in information diffusion. In: 2012 IEEE 12th International Conference on Data Mining, pp. 539–548. IEEE (2012)

    Google Scholar 

  14. Su, Y., Zhang, X., Wang, S., Fang, B., Zhang, T., Yu, P.S.: Understanding information diffusion via heterogeneous information network embeddings. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp. 501–516. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3_30

    Chapter  Google Scholar 

  15. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  16. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  17. Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. 2(1), 1–9 (2012)

    Article  Google Scholar 

  18. Zhou, F., Xu, X., Trajcevski, G., Zhang, K.: A survey of information cascade analysis: models, predictions, and recent advances. ACM Comput. Surv. (CSUR) 54(2), 1–36 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by: National Natural Science Foundation of China (Nos. 61966008, U2033213, 61804017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxing Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Shang, J., Jia, X., Liu, D., Hao, F., Zhang, Z. (2022). CollaborateCas: Popularity Prediction of Information Cascades Based on Collaborative Graph Attention Networks. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13245. Springer, Cham. https://doi.org/10.1007/978-3-031-00123-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00123-9_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00122-2

  • Online ISBN: 978-3-031-00123-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics