Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

WhiskEras 2.0: Fast and Accurate Whisker Tracking in Rodents

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2021)

Abstract

Mice and rats can rapidly move their whiskers when exploring the environment. Accurate description of these movements is important for behavioral studies in neuroscience. Whisker tracking is, however, a notoriously difficult task due to the fast movements and frequent crossings and juxtapositionings among whiskers. We have recently developed WhiskEras, a computer-vision-based algorithm for whisker tracking in untrimmed, head-restrained mice. Although WhiskEras excels in tracking the movements of individual unmarked whiskers over time based on high-speed videos, the initial version of WhiskEras still had two issues preventing its widespread use: it involved tuning a great number of parameters manually to adjust for different experimental setups, and it was slow, processing less than 1 frame per second. To overcome these problems, we present here WhiskEras 2.0, in which the unwieldy stages of the initial algorithm were improved. The enhanced algorithm is more robust, not requiring intense parameter tuning. Furthermore, it was accelerated by first porting the code from MATLAB to C++ and then using advanced parallelization techniques with CUDA and OpenMP to achieve a speedup of at least 75x when processing a challenging whisker video. The improved WhiskEras 2.0 is made publicly available and is ready for processing high-speed videos, thus propelling behavioral research in neuroscience, in particular on sensorimotor integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.com/neurocomputing-lab/whisker/whiskeras-2.0.

References

  1. Arvanitis, P.: Towards automated and fast whisker tracking in rodents. Master’s thesis, Delft University of Technology, January 2021

    Google Scholar 

  2. Betting, J.-H.L.F., Romano, V., Al-Ars, Z., Bosman, L.W.J., Strydis, C., De Zeeuw C.I.: WhiskEras: a new algorithm for accurate whisker tracking. Fron. Cell. Neurosci. 14 (2020). https://doi.org/10.3389/fncel.2020.588445. https://www.ncbi.nlm.nih.gov/pmc/issues/351366/. ISSN 1662-5102

  3. Bosman, L., Houweling, A., Owens, C., Tanke, N., Shevchouk, O., Rahmati, N., Teunissen, W., Ju, C., Gong, W., Koekkoek, S., De Zeeuw, C.: Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front. Integr. Neurosci. 5, 53 (2011)

    Article  Google Scholar 

  4. Bottou, L.: Stochastic gradient SVM (2007). https://leon.bottou.org/projects/sgd. Accessed 10 Mar 2021

  5. Carvell, G., Simons, D.: Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10(8), 2638–2648 (1990)

    Article  Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM TIST 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm

  7. Clack, N.G., et al.: Automated tracking of whiskers in videos of head fixed rodents. PLoS Comput. Biol. 8(7), e1002591 (2012)

    Article  Google Scholar 

  8. Dooley, J.C., Glanz, R.M., Sokoloff, G., Blumberg, M.S.: Self-generated whisker movements drive state-dependent sensory input to developing barrel cortex. Curr. Biol. 30(12), 2404–2410.e4 (2020)

    Google Scholar 

  9. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. JMLR 9, 1871–1874 (2008)

    MATH  Google Scholar 

  10. Grant, R.A., Mitchinson, B., Fox, C.W., Prescott, T.J.: Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. JNP 101(2), 862–874 (2009)

    Google Scholar 

  11. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org. Accessed 10 Mar 2021

  12. Harris, M.: How to optimize data transfers in CUDA C/C++ (2012). https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/. Accessed 5 Mar 2021

  13. Herfst, L.J., Brecht, M.: Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat. JNP 99(6), 2821–2832 (2008)

    Google Scholar 

  14. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE TPAMI 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  15. Kelly, M.K., Carvell, G.E., Kodger, J.M., Simons, D.J.: Sensory loss by selected whisker removal produces immediate disinhibition in the somatosensory cortex of behaving rats. J. Neurosci. 19(20), 9117–9125 (1999)

    Article  Google Scholar 

  16. Li, Q., Salman, R., Test, E., Strack, R., Kecman, V.: GPUSVM: a comprehensive CUDA based support vector machine package. OCS 1(4), 387–405 (2011)

    MATH  Google Scholar 

  17. Ma, Y., et al.: Towards real-time whisker tracking in rodents for studying sensorimotor disorders, July 2017

    Google Scholar 

  18. Perkon, I., Košir, A., Itskov, P.M., Tasič, J., Diamond, M.E.: Unsupervised quantification of whisking and head movement in freely moving rodents. JNP 105(4), 1950–1962 (2011)

    Google Scholar 

  19. Radon, J.: On the determination of functions from their integral values along certain manifolds. IEEE T-MI 5(4), 170–176 (1986)

    Google Scholar 

  20. Raghupathy, K., Parks, T.: Improved curve tracing in images. In: 2004 ICASSP. IEEE (2004)

    Google Scholar 

  21. Rahmati, N., et al.: Cerebellar potentiation and learning a whisker-based object localization task with a time response window. J. Neurosci. 34(5), 1949–1962 (2014)

    Article  Google Scholar 

  22. Steger, C.: An unbiased detector of curvilinear structures. IEEE TPAMI 20(2), 113–125 (1998)

    Article  Google Scholar 

  23. Woolsey, T.A., Welker, C., Schwartz, R.H.: Comparative anatomical studies of the SmL face cortex with special reference to the occurrence of “barrels’’ in layer IV. JCN 164(1), 79–94 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Strydis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arvanitis, P., Betting, JH.L.F., Bosman, L.W.J., Al-Ars, Z., Strydis, C. (2022). WhiskEras 2.0: Fast and Accurate Whisker Tracking in Rodents. In: Orailoglu, A., Jung, M., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2021. Lecture Notes in Computer Science, vol 13227. Springer, Cham. https://doi.org/10.1007/978-3-031-04580-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04580-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04579-0

  • Online ISBN: 978-3-031-04580-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics