Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Facilitating Collaborative Learning with Virtual Reality Simulations, Gaming and Pair Programming

  • Chapter
  • First Online:
Handbook on Intelligent Techniques in the Educational Process

Abstract

The chapter presents socio-interactional functions that support collaborative learning through three case examples. The examples stem from our long line of empirical research in which we have explored the possibilities of using various types of emerging digital technologies for enhancing collaborative learning and interaction. We present case examples from technology-enhanced simulation-based learning environments, Vive/Minecraft applying XR/VR and pair programming in a creative media project design with Scratch, which are all regarded as powerful experiential learning contexts that can provide engaging opportunities for collaborative learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Blascovich, J. Bailenson, Immersive virtual environments and education simulations, in Virtual Decisions: Digital Stimulations for Teaching Reasoning in the Social Sciences and Humanities, ed. by S. Cohen, K.E. Portney, D. Rehberger, C. Thorsen (Lawrence Erlbaum Associates, 2006), pp. 229–253

    Google Scholar 

  2. L.F. Johnson, A.H. Levine, Virtual worlds: Inherently immersive, highly social learning spaces. Theory Pract. 47, 161–170 (2008)

    Article  Google Scholar 

  3. K.W. Lau, P.Y. Lee, The use of virtual reality for creating unusual environmental stimulation to motivate students to explore creative ideas. Interact. Learn. Environ. 23(1), 3–18 (2015)

    Article  Google Scholar 

  4. J. Radianti, T.A. Majchrzak, J. Fromm, I. Wohlgenannt, A systematic review of immersive virtual reality applications for higher education: design elements, lessons learned, and research agenda. Comput. Educ. 147 (2019)

    Google Scholar 

  5. K.E. Stavroulia, A. Lanitis, Enhancing reflection and empathy skills via using a virtual reality based learning framework. Int. J. Emerg. Technol. Learn. 14(7), 18–36 (2019)

    Article  Google Scholar 

  6. Y. Baek, E. Min, S. Yun, Mining educational implications of Minecraft. Comput. Sch. 37(1), 1–16 (2020)

    Article  Google Scholar 

  7. M. Qian, K.R. Clark, Game-based learning and 21st century skills: a review of recent research. Comput. Hum. Behav. 63, 50–58 (2016). https://doi.org/10.1016/j.chb.2016.05.023

    Article  Google Scholar 

  8. K. Brennan, M. Resnick, New frameworks for studying and assessing the development of computational thinking, in AERA 2012, Vancouver, BC (2012)

    Google Scholar 

  9. G.V. Georgiev, I.M. Sánchez, D. Ferreira, A framework for capturing creativity in digital fabrication. Des. J. 20, 3659–3668 (2017). https://doi.org/10.1080/14606925.2017.1352870

    Article  Google Scholar 

  10. M. Iwata, K. Pitkänen, J. Laru, K. Mäkitalo, Exploring potentials and challenges to develop twenty-first century skills and computational thinking in K-12 maker education. Front. Educ. (2020). https://doi.org/10.3389/feduc.2020.00087

  11. H. Jeong, C.E. Hmelo-Silver, Seven affordances of computer-supported collaborative learning: how to support collaborative learning? How can technologies help? Educ. Psychol. 51, 247–265 (2016). https://doi.org/10.1080/00461520.2016.1158654

    Article  Google Scholar 

  12. J. Roschelle, Learning by collaborating: convergent conceptual change. J. Learn. Sci. 2, 235–276 (1992)

    Article  Google Scholar 

  13. M.T.H. Chi, Active-constructive-interactive: a conceptual framework for differentiating learning activities. Top. Cogn. Sci. 1, 73–105 (2009). https://doi.org/10.1111/j.1756-8765.2008.01005.x

    Article  Google Scholar 

  14. P. Dillenbourg, Introduction: what do you mean by collaborative learning?, in Collaborative Learning: Cognitive and Computational Approaches, ed. by P. Dillenbourg (Elsevier Science, Oxford, 1999), pp. 1–19

    Google Scholar 

  15. J. Laru, P. Näykki, S. Järvelä, Four stages of research on the educational use of ubiquitous computing. learning technologies. IEEE Trans. 8(1), 69–82 (2015)

    Google Scholar 

  16. S. Ludvigsen, R. Steier, Reflections and looking ahead for CSCL: digital infrastructures, digital tools, and collaborative learning. Int. J. Comput. Support. Collab. Learn. 14, 415–423 (2019). https://doi.org/10.1007/s11412-019-09312-3

    Article  Google Scholar 

  17. J. Isohätälä, P. Näykki, S. Järvelä, M. Baker, K. Lund, Social sensitivity in CSCL. Int. J. Comput. Support. Collab. Learn. (2021). https://doi.org/10.1007/s11412-021-09344-8

    Article  Google Scholar 

  18. S. Järvelä, D. Gasevic, T. Seppänen, M. Pechenizkyi, Bridging learning sciences, machine learning, and affective computing for understanding cognition and affect in collaborative learning. Br. J. Edu. Technol. (2020). https://doi.org/10.1111/bjet.12917

    Article  Google Scholar 

  19. V. Marin, P. Jääskelä, P. Häkkinen, M. Juntunen, H. Rasku-Puttonen, M. Vesisenaho, Seamless learning environments in higher education with mobile devices and examples. Int. J. Mobile Blended Learn. 8(1), 51–68 (2016). https://doi.org/10.4018/IJMBL.2016010104

    Article  Google Scholar 

  20. P. Näykki, J. Laru, E. Vuopala, P. Siklander, S. Järvelä, Affective learning in digital education–case studies of social networking systems, games for learning and digital fabrication. Front. Educ. (2019). https://doi.org/10.3389/feduc.2019.00128

    Article  Google Scholar 

  21. C. Kaendler, M. Wiedmann, N. Rummel, H. Spada, Teacher competencies for the implementation of collaborative learning in the classroom: a framework and research review. Educ. Psychol. Rev. 27(3), 505–536 (2015)

    Article  Google Scholar 

  22. M. Laal, M. Laal, Collaborative learning: what is it? Procedia Soc. Behav. Sci. 31, 491–495 (2012)

    Article  Google Scholar 

  23. R. Huang, J.M. Spector, J. Yang, Educational Technology (Springer, 2019)

    Book  Google Scholar 

  24. J. Roschelle, S.D. Teasley, The construction of shared knowledge in collaborative problem solving, in Computer-Supported Collaborative Learning, ed. by C. O’Malley (Springer, Berlin, 1995), pp. 69–97. doi:https://doi.org/10.1007/978-3-642-85098-1_5.

  25. B. Barron, When smart groups fail. J. Learn. Sci. 12(3), 307–359 (2003). https://doi.org/10.1207/S15327809JLS1203

    Article  Google Scholar 

  26. J. Isohätälä, P. Näykki, S. Järvelä, Cognitive and socio-emotional interaction in collaborative learning: exploring fluctuations in students’ participation. Scand. J. Educ. Res. 64(6), 831–851 (2020). https://doi.org/10.1080/00313831.2019.1623310

    Article  Google Scholar 

  27. P. Näykki, J. Isohätälä, S. Järvelä, J. Pöysä-Tarhonen, P. Häkkinen, Facilitating socio-cognitive and socio-emotional monitoring in collaborative learning with a regulation macro script–an exploratory study. Int. J. Comput. Support. Collab. Learn. 12(3), 251–279 (2017). https://doi.org/10.1007/s11412-017-9259-5

    Article  Google Scholar 

  28. L. Linnenbrink-Garcia, T.K. Rogat, K.L.K. Koskey, Affect and engagement during small group instruction. Contemp. Educ. Psychol. 36(1), 13–24 (2011). https://doi.org/10.1016/j.cedpsych.2010.09.001

  29. N. Miyake, P. Kirschner, The social and interactive dimensions of collaborative learning, in The Cambridge Handbook of the Learning Sciences: Cambridge Handbooks in Psychology, ed. by Sawyer R. (Cambridge University Press, 2014), pp. 418–438. https://doi.org/10.1017/CBO9781139519526.026

  30. S. Järvelä, H. Järvenoja, P. Näykki, Analyzing regulation of motivation as an individual and social process–a situated approach, in Interpersonal Regulation of Learning and Motivation: Methodological Advances, ed. by S. Volet, M. Vauras (Routledge, New York, 2013), pp. 170–187

    Google Scholar 

  31. P. Näykki, S. Järvelä, P. Kirschner, H. Järvenoja, Socio- emotional conflict in collaborative learning–a process-oriented case study in a higher education context. Int. J. Educ. Res. 68, 1–14 (2014)

    Article  Google Scholar 

  32. S. Ucan, M. Webb, Social regulation of learning during collaborative inquiry learning in science: how does it emerge and what are its functions? Int. J. Sci. Educ. 37(15), 2503–2532 (2015). https://doi.org/10.1080/09500693.2015.1083634

    Article  Google Scholar 

  33. S. Volet, M. Summers, J. Thurman, High-level co-regulation in collaborative learning: How does it emerge and how is it sustained? Learning and Instruction, 19(2), 128–143 (2009)

    Google Scholar 

  34. E. Vuopala, P. Näykki, J. Isohätälä, S. Järvelä, Knoweldge co-construction activities and task-related monitoring in scripted collaborative learning. Learning, culture and social interaction, 21, 234–249 (2019)

    Google Scholar 

  35. A.F. Hadwin, S. Järvelä, M. Miller, Self-regulation, co-regulation, and shared regulation in collaborative learning environments, in Handbook of Self-Regulation of Learning and Performance, 2nd edn., ed. by D.H. Schunk, J.A. Greene (Routledge, New York, NY, 2018), pp. 83–106

    Google Scholar 

  36. J. Van de Pol, N. Mercer, M. Volman, Scaffolding student understanding in small-group work: students’ uptake of teacher support in subsequent small-group interaction. J. Learn. Sci. 28(2), 206–239 (2019). https://doi.org/10.1080/10508406.2018.1522258

    Article  Google Scholar 

  37. J.A. Fredricks, P.C. Blumenfeld, A.H. Paris, School engagement: potential of the concept, state of the evidence. Rev. Educ. Res. 74(1), 59–109 (2004)

    Article  Google Scholar 

  38. S. Sinha, T.K. Rogat, K.R. Adams-Wiggins, C.E. Hmelo-Silver, Collaborative group engagement in a computer-supported inquiry learning environment. Int. J. Comput. Support. Collab. Learn. 10(3), 273–307 (2015)

    Article  Google Scholar 

  39. N.M. Webb, M.L. Franke, M. Ing, J. Wong, C.H. Fernandez, N. Shin, A.C. Turrou, Engaging with others’ mathematical ideas: interrelationships among student participation, teachers’ instructional practices, and learning. Int. J. Educ. Res. 63, 79–93 (2014)

    Google Scholar 

  40. P. Häkkinen, S. Järvelä, K. Mäkitalo-Siegl, A. Ahonen, P. Näykki, T. Valtonen, Preparing teacher students for 21st century learning practices (PREP 21): a framework for enhancing collaborative problem solving and strategic learning skills. Teach. Teach. Theory Pract., 1–17 (2017)

    Google Scholar 

  41. C. Hmelo-Silver, H.S. Barrows, Facilitating collaborative knowledge building. Cognition and Instruction. 26(1), 48–94 (2008)

    Google Scholar 

  42. L. Pedro, C. Barbosa, C. Santos, A critical review of mobile learning integration in formal educational contexts. Int. J. Educ. Tech. High. Educ. 15, 1–15 (2018). https://doi.org/10.1186/s41239-018-0091-4

    Article  Google Scholar 

  43. M. Vesisenaho, M. Juntunen, P. Häkkinen, J. Pöysä-Tarhonen, J. Fagerlund, I. Miakush, T. Parviainen, Virtual reality in education: focus on the role of emotions and physiological reactivity. J. Virtual Worlds Res. 12(1) (2019). https://doi.org/10.4101/jvwr.v12i1.7329

  44. C. Kwon, Verification of the possibility and effectiveness of experiential learning using HMD-based immersive VR technologies. Virtual Real. 23(1), 101–118 (2019)

    Article  Google Scholar 

  45. O. Chernikova, N. Heitzmann, M. Stadler, D. Holzberger, T. Seidel, F. Fischer, Simulation-based learning in higher education: a meta-analysis. Rev. Educ. Res. 90(4), 499–541 (2020)

    Article  Google Scholar 

  46. F. Lateef, Simulation-based learning: just like the real thing. J. Emerg. Trauma Shock 3(4), 348 (2010)

    Article  Google Scholar 

  47. V.R. LeBlanc, The relationship between emotions and learning in simulation-based education, simulation in healthcare. J. Soc. Simul. Healthc. 14(3), 137–139 (2019). https://doi.org/10.1097/SIH.0000000000000379

    Article  Google Scholar 

  48. H. Jossberger, S. Brand-Gruwel, M.W. van de Wiel, H. Boshuizen, Learning in workplace simulations in vocational education: a student perspective. Vocat. Learn. 11(2), 179–204 (2018)

    Article  Google Scholar 

  49. M. Silvennoinen, M. Vesisenaho, M. Manu, T. Kullberg, A. Malinen, T. Parviainen, Methodology development in adult learning research: combining physiological reactions and learning experiences in simulation-based learning environments, in EDULEARN20 Proceedings. 12th International Conference on Education and New Learning Technologies, EDULEARN Proceedings. IATED, ed. by L. Gómez Chova, A. López Martínez, I. Candel Torres (2020), pp. 5037–5046. https://doi.org/10.21125/edulearn.2020.1316

  50. T. Keskitalo, Teachers’ conceptions and their approaches to teaching in virtual reality and simulation-based learning environments. Teach. Teach. Theory Pract. 17(1), 131–147 (2011)

    Article  Google Scholar 

  51. S. Nebel, S. Schneider, G.D. Rey, Mining learning and crafting scientific experiments: a literature review on the use of minecraft in education and research. Educ. Technol. Soc. 19(2), 355–366 (2016)

    Google Scholar 

  52. J.L. Plass, B.D. Homer, C.K. Kinzer, Foundations of game-based learning. Educ. Psychol. 50(4), 258–283 (2015). https://doi.org/10.1080/00461520.2015.1122533

    Article  Google Scholar 

  53. T.M. Connolly, E.A. Boyle, E. MacArthur, T. Hainey, J.M. Boyle, A systematic literature review of empirical evidence on computer games and serious games. Comput. Educ. 59(2), 661–686 (2012)

    Article  Google Scholar 

  54. S.Y. Lye, J.H.L. Koh, Review on teaching and learning of computational thinking through programming: what is next for K-12? Comput. Hum. Behav. 41, 51–61 (2014). https://doi.org/10.1016/j.chb.2014.09.012Mayer2015

    Article  Google Scholar 

  55. R.E. Mayer, On the need for research evidence to guide the design of computer games for learning. Educ. Psychol. 50, 349–353 (2015). https://doi.org/10.1080/00461520.2015.1133307

    Article  Google Scholar 

  56. C. Kazimoglu, M. Kiernan, L. Bacon, L. Mackinnon, A serious game for developing computational thinking and learning introductory computer programming. Procedia Soc. Behav. Sci. 47, 1991–1999 (2012)

    Article  Google Scholar 

  57. N. Pellas, Exploring interrelationships among high school students’ engagement factors in introductory programming courses via a 3D multi-user serious game created in open sim. J. UCS 20(12), 1608–1628 (2014)

    Google Scholar 

  58. T. Nousiainen, M. Kangas, J. Rikala, M. Vesisenaho, Teacher competencies in game-based pedagogy. Teach. Teach. Educ. 74, 85–97 (2018)

    Article  Google Scholar 

  59. R. Van Eck, Digital game-based learning: It’s not just the digital natives who are restless. Educ. Rev. 41(2), 16–18 (2006)

    Google Scholar 

  60. Y.B. Kafai, Q. Burke, Constructionist gaming: understanding the benefits of making games for learning. Educ. Psychol. 50(4), 313–334 (2015)

    Article  Google Scholar 

  61. N. Vos, H. van der Meijden, E. Denessen, Effects of constructing versus playing an educational game on student motivation and deep learning strategy use. Comput. Educ. 56(1), 127–137 (2011)

    Article  Google Scholar 

  62. M. Checa-Romero, G. Pascual, Minecraft and machinima in action: development of creativity in the classroom. Technol. Pedagog. Educ. 27(5), 625–637 (2018). https://doi.org/10.1080/1475939X.2018.1537933

    Article  Google Scholar 

  63. D.M. Díaz, J.L. Saorín, C. Carbonell-Carrera, J. de la Torre Cantero, Minecraft: three-dimensional construction workshop for improvement of creativity. Technol. Pedagog. Educ. 29(5), 665–678 (2020)

    Article  Google Scholar 

  64. M. Kyllönen, M. Vesisenaho, M. Manu, P. Häkkinen, OpenDigi-hankkeen satoa: opettajat, opettajankouluttajat ja opiskelijat yhteiskehittämässä digipedagogista osaamista, in Merkityksellistä oppimista etsimässä-oppimisympäristöjen moninaisuus nyt ja tulevaisuudessa, ed. by A. Veijola, O.-P. Salo, S. Roos (toim.). Jyväskylän normaalikoulun julkaisuja, 16, 163–180 (2020)

    Google Scholar 

  65. J. Fagerlund, A study on the assessment of introductory computational thinking via scratch programming in primary schools, in Proceedings of the 2018 ACM Conference on International Computing Education Research (ICER ‘18), ed. by L. Malmi, A. Korhonen, R. McCartney, A. Petersen (ACM, New York, 2018), pp. 264–265

    Google Scholar 

  66. J. Fagerlund, P. Häkkinen, M. Vesisenaho, J. Viiri, Assessing 4th grade students’ computational thinking through scratch programming projects. Inf. Educ. 19(4), 611–640 (2020)

    Google Scholar 

  67. J. Fagerlund, M. Vesisenaho, P. Häkkinen, Fourth Grade Students’ Computational Thinking in Pair Programming with Scratch: A Holistic Case Analysis (in review)

    Google Scholar 

  68. J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The Scratch programming language and environment. ACM Trans. Comput. Educ. 10(4), 1–15 (2010). https://doi.org/10.1145/1868358.1868363

    Article  Google Scholar 

  69. B. Garneli, M. Giannakos, K. Chorianopoulos, Computing education in K-12 schools: a review of the literature, in 2015 IEEE Global Engineering Education Conference, Tallinn, Estonia [Conference Paper] (2015)

    Google Scholar 

  70. G. Robles, J.C.R. Hauck, J. Moreno-León, M. Román-González, R. Nombela, C. Grease von Wangenheim, On tools that support the development of computational thinking skills: Some thoughts and future vision, in Proceedings of the International Conference on Computational Thinking Education 2018, ed. by S.C. Kong, D. Andone, G. Biswas, T. Crick, H. U. Hoppe, T. C. Hsu, R. H. Huang, K. Y. Li, C. K. Looi, M. Milrad, J. Sheldon, J. L. Shih, K. F. Sin, M. Tissenbaum, J. Vahrenhold (The Education University of Hong Kong, Hong Kong, 2018)

    Google Scholar 

  71. J. Denner, L. Werner, S. Campe, S. Ortiz, Pair programming: under what conditions is it advantageous for middle school students? J. Res. Technol. Educ. 46(3), 277–296 (2014)

    Article  Google Scholar 

  72. J. Liebenberg, E. Mentz, B. Breed, Pair programming and secondary school girls’ enjoyment of programming and the subject Information Technology (IT). Comput. Sci. Educ. 22(3), 219–236 (2012). https://doi.org/10.1080/08993408.2012.713180

    Article  Google Scholar 

  73. E. Arisholm, H. Gallis, T. Dybé, D.D. SjAberg, Evaluating pair programming with respect to system complexity and programmer expertise. IEEE Trans. Software Eng. 33(2), 65–86 (2007). https://doi.org/10.1109/TSE.2007.17

    Article  Google Scholar 

  74. C. Lewis, N. Shah, How equity and inequity can emerge in pair programming, in Proceedings of the Eleventh Annual International Conference on International Computing Education Research (ICER ‘15) (ACM, New York, NY, 2015), pp. 41–50

    Google Scholar 

  75. M. Ally, F. Darroch, M. Toleman, A framework for understanding the factors influencing pair programming success, in Extreme Programming and Agile Processes in Software Engineering. XP 2005, ed. by H. Baumeister, M. Marchesi, M Holcombe. Lecture Notes in Computer Science, vol. 3556 (Springer, 2005). https://doi.org/10.1007/11499053_10

  76. R. Scherer, F. Siddiq, V.B. Sánchez, A meta-analysis of teaching and learning computer programming: effective instructional approaches and conditions. Comput. Hum. Behav., 109 (2020)

    Google Scholar 

  77. J. Moreno-León, G. Robles, M. Román-González, Dr. Scratch: automatic analysis of scratch projects to assess and foster computational thinking. Revista de Educación a Distancia 15(46), 1–23 (2015)

    Google Scholar 

  78. C.P. Rosé, N. Law, U. Cress, S. Ludvigsen, Highlighting tools and technologies for collaborative learning. Int. J. Comput. Support. Collab. Learn. 14, 1–6 (2019). https://doi.org/10.1007/s11412-019-09297-z

    Article  Google Scholar 

  79. M.J. Baker, J. Andriessen, S. Järvelä, Affective Learning Together: Social and Emotional Dimension of Collaborative Learning (Routledge, 2013). https://doi.org/10.4324/9780203069684

  80. P. Näykki, J. Isohätälä, S. Järvelä, You really brought all your feelings out–scaffolding students to identify the socioemotional and socio-cognitive challenges in collaborative learning. Learn. Cult. Soc. Interact. (2021)

    Google Scholar 

  81. H. Järvenoja, J. Malmberg, S. Järvelä, P. Näykki, H. Kontturi, Investigating students’ situation-specific emotional state and motivational goals during a learning project within one primary school classroom learning. Res. Pract. 5(1), 4–23 (2019). https://doi.org/10.1080/23735082.2018.1554821

    Article  Google Scholar 

  82. P. Näykki, H. Kontturi, V. Seppänen, N. Impiö, S. Järvelä, Teachers as learners–a qualitative exploration of pre-service and in-service teachers’ continuous learning community OpenDigi. J. Educ. Teach. Int. Res. Pedag. (2021). https://doi.org/10.1080/02607476.2021.1904777

    Article  Google Scholar 

  83. D. Kamińska, T. Sapiński, S. Wiak, T. Tikk, R.E. Haamer, E. Avots, G. Anbarjafari, Virtual reality and its applications in education: survey. Information 10(10), 318 (2019)

    Google Scholar 

  84. H. Fischer, M. Heinz, M. Breitenstein, Gamification of learning management systems and user types in higher education, in Proceedings of the 12th European Conference on Game-Based Learning (ECGBL 2018) (Academic Conferences and Publishing Limited, 2018), pp. 91–98

    Google Scholar 

  85. T. Nousiainen, M. Vesisenaho, E. Ahlström, M. Peltonen, S. Fort, G.M. Sacha, Gamifying teacher students’ learning platform: information and communication technology in teacher education courses, in Proceedings of the Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM'20) (Salamanca, Spain, October 21–23, 2020) (ACM, 2020). https://doi.org/10.1145/3434780.3436659

  86. M. Vesisenaho, P. Dillon, S. Havu-Nuutinen, T. Nousiainen, T. Valtonen, R. Wang, Creative improvisations with information and communication technology to support learning: a conceptual and developmental framework. J. Teach. Educ. Educ. 6(3), 229–250 (2017). http://jtee.org/document/issue14/article1.pdf

  87. W.R. Watson, C.J. Mong, C.A. Harris, A case study of the in-class use of a video game for teaching high school history. Comput. Educ. 56(2), 466–474 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piia Näykki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Näykki, P. et al. (2022). Facilitating Collaborative Learning with Virtual Reality Simulations, Gaming and Pair Programming. In: Ivanović, M., Klašnja-Milićević, A., Jain, L.C. (eds) Handbook on Intelligent Techniques in the Educational Process. Learning and Analytics in Intelligent Systems, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-04662-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04662-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04661-2

  • Online ISBN: 978-3-031-04662-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics