Abstract
The chapter presents socio-interactional functions that support collaborative learning through three case examples. The examples stem from our long line of empirical research in which we have explored the possibilities of using various types of emerging digital technologies for enhancing collaborative learning and interaction. We present case examples from technology-enhanced simulation-based learning environments, Vive/Minecraft applying XR/VR and pair programming in a creative media project design with Scratch, which are all regarded as powerful experiential learning contexts that can provide engaging opportunities for collaborative learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. Blascovich, J. Bailenson, Immersive virtual environments and education simulations, in Virtual Decisions: Digital Stimulations for Teaching Reasoning in the Social Sciences and Humanities, ed. by S. Cohen, K.E. Portney, D. Rehberger, C. Thorsen (Lawrence Erlbaum Associates, 2006), pp. 229–253
L.F. Johnson, A.H. Levine, Virtual worlds: Inherently immersive, highly social learning spaces. Theory Pract. 47, 161–170 (2008)
K.W. Lau, P.Y. Lee, The use of virtual reality for creating unusual environmental stimulation to motivate students to explore creative ideas. Interact. Learn. Environ. 23(1), 3–18 (2015)
J. Radianti, T.A. Majchrzak, J. Fromm, I. Wohlgenannt, A systematic review of immersive virtual reality applications for higher education: design elements, lessons learned, and research agenda. Comput. Educ. 147 (2019)
K.E. Stavroulia, A. Lanitis, Enhancing reflection and empathy skills via using a virtual reality based learning framework. Int. J. Emerg. Technol. Learn. 14(7), 18–36 (2019)
Y. Baek, E. Min, S. Yun, Mining educational implications of Minecraft. Comput. Sch. 37(1), 1–16 (2020)
M. Qian, K.R. Clark, Game-based learning and 21st century skills: a review of recent research. Comput. Hum. Behav. 63, 50–58 (2016). https://doi.org/10.1016/j.chb.2016.05.023
K. Brennan, M. Resnick, New frameworks for studying and assessing the development of computational thinking, in AERA 2012, Vancouver, BC (2012)
G.V. Georgiev, I.M. Sánchez, D. Ferreira, A framework for capturing creativity in digital fabrication. Des. J. 20, 3659–3668 (2017). https://doi.org/10.1080/14606925.2017.1352870
M. Iwata, K. Pitkänen, J. Laru, K. Mäkitalo, Exploring potentials and challenges to develop twenty-first century skills and computational thinking in K-12 maker education. Front. Educ. (2020). https://doi.org/10.3389/feduc.2020.00087
H. Jeong, C.E. Hmelo-Silver, Seven affordances of computer-supported collaborative learning: how to support collaborative learning? How can technologies help? Educ. Psychol. 51, 247–265 (2016). https://doi.org/10.1080/00461520.2016.1158654
J. Roschelle, Learning by collaborating: convergent conceptual change. J. Learn. Sci. 2, 235–276 (1992)
M.T.H. Chi, Active-constructive-interactive: a conceptual framework for differentiating learning activities. Top. Cogn. Sci. 1, 73–105 (2009). https://doi.org/10.1111/j.1756-8765.2008.01005.x
P. Dillenbourg, Introduction: what do you mean by collaborative learning?, in Collaborative Learning: Cognitive and Computational Approaches, ed. by P. Dillenbourg (Elsevier Science, Oxford, 1999), pp. 1–19
J. Laru, P. Näykki, S. Järvelä, Four stages of research on the educational use of ubiquitous computing. learning technologies. IEEE Trans. 8(1), 69–82 (2015)
S. Ludvigsen, R. Steier, Reflections and looking ahead for CSCL: digital infrastructures, digital tools, and collaborative learning. Int. J. Comput. Support. Collab. Learn. 14, 415–423 (2019). https://doi.org/10.1007/s11412-019-09312-3
J. Isohätälä, P. Näykki, S. Järvelä, M. Baker, K. Lund, Social sensitivity in CSCL. Int. J. Comput. Support. Collab. Learn. (2021). https://doi.org/10.1007/s11412-021-09344-8
S. Järvelä, D. Gasevic, T. Seppänen, M. Pechenizkyi, Bridging learning sciences, machine learning, and affective computing for understanding cognition and affect in collaborative learning. Br. J. Edu. Technol. (2020). https://doi.org/10.1111/bjet.12917
V. Marin, P. Jääskelä, P. Häkkinen, M. Juntunen, H. Rasku-Puttonen, M. Vesisenaho, Seamless learning environments in higher education with mobile devices and examples. Int. J. Mobile Blended Learn. 8(1), 51–68 (2016). https://doi.org/10.4018/IJMBL.2016010104
P. Näykki, J. Laru, E. Vuopala, P. Siklander, S. Järvelä, Affective learning in digital education–case studies of social networking systems, games for learning and digital fabrication. Front. Educ. (2019). https://doi.org/10.3389/feduc.2019.00128
C. Kaendler, M. Wiedmann, N. Rummel, H. Spada, Teacher competencies for the implementation of collaborative learning in the classroom: a framework and research review. Educ. Psychol. Rev. 27(3), 505–536 (2015)
M. Laal, M. Laal, Collaborative learning: what is it? Procedia Soc. Behav. Sci. 31, 491–495 (2012)
R. Huang, J.M. Spector, J. Yang, Educational Technology (Springer, 2019)
J. Roschelle, S.D. Teasley, The construction of shared knowledge in collaborative problem solving, in Computer-Supported Collaborative Learning, ed. by C. O’Malley (Springer, Berlin, 1995), pp. 69–97. doi:https://doi.org/10.1007/978-3-642-85098-1_5.
B. Barron, When smart groups fail. J. Learn. Sci. 12(3), 307–359 (2003). https://doi.org/10.1207/S15327809JLS1203
J. Isohätälä, P. Näykki, S. Järvelä, Cognitive and socio-emotional interaction in collaborative learning: exploring fluctuations in students’ participation. Scand. J. Educ. Res. 64(6), 831–851 (2020). https://doi.org/10.1080/00313831.2019.1623310
P. Näykki, J. Isohätälä, S. Järvelä, J. Pöysä-Tarhonen, P. Häkkinen, Facilitating socio-cognitive and socio-emotional monitoring in collaborative learning with a regulation macro script–an exploratory study. Int. J. Comput. Support. Collab. Learn. 12(3), 251–279 (2017). https://doi.org/10.1007/s11412-017-9259-5
L. Linnenbrink-Garcia, T.K. Rogat, K.L.K. Koskey, Affect and engagement during small group instruction. Contemp. Educ. Psychol. 36(1), 13–24 (2011). https://doi.org/10.1016/j.cedpsych.2010.09.001
N. Miyake, P. Kirschner, The social and interactive dimensions of collaborative learning, in The Cambridge Handbook of the Learning Sciences: Cambridge Handbooks in Psychology, ed. by Sawyer R. (Cambridge University Press, 2014), pp. 418–438. https://doi.org/10.1017/CBO9781139519526.026
S. Järvelä, H. Järvenoja, P. Näykki, Analyzing regulation of motivation as an individual and social process–a situated approach, in Interpersonal Regulation of Learning and Motivation: Methodological Advances, ed. by S. Volet, M. Vauras (Routledge, New York, 2013), pp. 170–187
P. Näykki, S. Järvelä, P. Kirschner, H. Järvenoja, Socio- emotional conflict in collaborative learning–a process-oriented case study in a higher education context. Int. J. Educ. Res. 68, 1–14 (2014)
S. Ucan, M. Webb, Social regulation of learning during collaborative inquiry learning in science: how does it emerge and what are its functions? Int. J. Sci. Educ. 37(15), 2503–2532 (2015). https://doi.org/10.1080/09500693.2015.1083634
S. Volet, M. Summers, J. Thurman, High-level co-regulation in collaborative learning: How does it emerge and how is it sustained? Learning and Instruction, 19(2), 128–143 (2009)
E. Vuopala, P. Näykki, J. Isohätälä, S. Järvelä, Knoweldge co-construction activities and task-related monitoring in scripted collaborative learning. Learning, culture and social interaction, 21, 234–249 (2019)
A.F. Hadwin, S. Järvelä, M. Miller, Self-regulation, co-regulation, and shared regulation in collaborative learning environments, in Handbook of Self-Regulation of Learning and Performance, 2nd edn., ed. by D.H. Schunk, J.A. Greene (Routledge, New York, NY, 2018), pp. 83–106
J. Van de Pol, N. Mercer, M. Volman, Scaffolding student understanding in small-group work: students’ uptake of teacher support in subsequent small-group interaction. J. Learn. Sci. 28(2), 206–239 (2019). https://doi.org/10.1080/10508406.2018.1522258
J.A. Fredricks, P.C. Blumenfeld, A.H. Paris, School engagement: potential of the concept, state of the evidence. Rev. Educ. Res. 74(1), 59–109 (2004)
S. Sinha, T.K. Rogat, K.R. Adams-Wiggins, C.E. Hmelo-Silver, Collaborative group engagement in a computer-supported inquiry learning environment. Int. J. Comput. Support. Collab. Learn. 10(3), 273–307 (2015)
N.M. Webb, M.L. Franke, M. Ing, J. Wong, C.H. Fernandez, N. Shin, A.C. Turrou, Engaging with others’ mathematical ideas: interrelationships among student participation, teachers’ instructional practices, and learning. Int. J. Educ. Res. 63, 79–93 (2014)
P. Häkkinen, S. Järvelä, K. Mäkitalo-Siegl, A. Ahonen, P. Näykki, T. Valtonen, Preparing teacher students for 21st century learning practices (PREP 21): a framework for enhancing collaborative problem solving and strategic learning skills. Teach. Teach. Theory Pract., 1–17 (2017)
C. Hmelo-Silver, H.S. Barrows, Facilitating collaborative knowledge building. Cognition and Instruction. 26(1), 48–94 (2008)
L. Pedro, C. Barbosa, C. Santos, A critical review of mobile learning integration in formal educational contexts. Int. J. Educ. Tech. High. Educ. 15, 1–15 (2018). https://doi.org/10.1186/s41239-018-0091-4
M. Vesisenaho, M. Juntunen, P. Häkkinen, J. Pöysä-Tarhonen, J. Fagerlund, I. Miakush, T. Parviainen, Virtual reality in education: focus on the role of emotions and physiological reactivity. J. Virtual Worlds Res. 12(1) (2019). https://doi.org/10.4101/jvwr.v12i1.7329
C. Kwon, Verification of the possibility and effectiveness of experiential learning using HMD-based immersive VR technologies. Virtual Real. 23(1), 101–118 (2019)
O. Chernikova, N. Heitzmann, M. Stadler, D. Holzberger, T. Seidel, F. Fischer, Simulation-based learning in higher education: a meta-analysis. Rev. Educ. Res. 90(4), 499–541 (2020)
F. Lateef, Simulation-based learning: just like the real thing. J. Emerg. Trauma Shock 3(4), 348 (2010)
V.R. LeBlanc, The relationship between emotions and learning in simulation-based education, simulation in healthcare. J. Soc. Simul. Healthc. 14(3), 137–139 (2019). https://doi.org/10.1097/SIH.0000000000000379
H. Jossberger, S. Brand-Gruwel, M.W. van de Wiel, H. Boshuizen, Learning in workplace simulations in vocational education: a student perspective. Vocat. Learn. 11(2), 179–204 (2018)
M. Silvennoinen, M. Vesisenaho, M. Manu, T. Kullberg, A. Malinen, T. Parviainen, Methodology development in adult learning research: combining physiological reactions and learning experiences in simulation-based learning environments, in EDULEARN20 Proceedings. 12th International Conference on Education and New Learning Technologies, EDULEARN Proceedings. IATED, ed. by L. Gómez Chova, A. López Martínez, I. Candel Torres (2020), pp. 5037–5046. https://doi.org/10.21125/edulearn.2020.1316
T. Keskitalo, Teachers’ conceptions and their approaches to teaching in virtual reality and simulation-based learning environments. Teach. Teach. Theory Pract. 17(1), 131–147 (2011)
S. Nebel, S. Schneider, G.D. Rey, Mining learning and crafting scientific experiments: a literature review on the use of minecraft in education and research. Educ. Technol. Soc. 19(2), 355–366 (2016)
J.L. Plass, B.D. Homer, C.K. Kinzer, Foundations of game-based learning. Educ. Psychol. 50(4), 258–283 (2015). https://doi.org/10.1080/00461520.2015.1122533
T.M. Connolly, E.A. Boyle, E. MacArthur, T. Hainey, J.M. Boyle, A systematic literature review of empirical evidence on computer games and serious games. Comput. Educ. 59(2), 661–686 (2012)
S.Y. Lye, J.H.L. Koh, Review on teaching and learning of computational thinking through programming: what is next for K-12? Comput. Hum. Behav. 41, 51–61 (2014). https://doi.org/10.1016/j.chb.2014.09.012Mayer2015
R.E. Mayer, On the need for research evidence to guide the design of computer games for learning. Educ. Psychol. 50, 349–353 (2015). https://doi.org/10.1080/00461520.2015.1133307
C. Kazimoglu, M. Kiernan, L. Bacon, L. Mackinnon, A serious game for developing computational thinking and learning introductory computer programming. Procedia Soc. Behav. Sci. 47, 1991–1999 (2012)
N. Pellas, Exploring interrelationships among high school students’ engagement factors in introductory programming courses via a 3D multi-user serious game created in open sim. J. UCS 20(12), 1608–1628 (2014)
T. Nousiainen, M. Kangas, J. Rikala, M. Vesisenaho, Teacher competencies in game-based pedagogy. Teach. Teach. Educ. 74, 85–97 (2018)
R. Van Eck, Digital game-based learning: It’s not just the digital natives who are restless. Educ. Rev. 41(2), 16–18 (2006)
Y.B. Kafai, Q. Burke, Constructionist gaming: understanding the benefits of making games for learning. Educ. Psychol. 50(4), 313–334 (2015)
N. Vos, H. van der Meijden, E. Denessen, Effects of constructing versus playing an educational game on student motivation and deep learning strategy use. Comput. Educ. 56(1), 127–137 (2011)
M. Checa-Romero, G. Pascual, Minecraft and machinima in action: development of creativity in the classroom. Technol. Pedagog. Educ. 27(5), 625–637 (2018). https://doi.org/10.1080/1475939X.2018.1537933
D.M. Díaz, J.L. Saorín, C. Carbonell-Carrera, J. de la Torre Cantero, Minecraft: three-dimensional construction workshop for improvement of creativity. Technol. Pedagog. Educ. 29(5), 665–678 (2020)
M. Kyllönen, M. Vesisenaho, M. Manu, P. Häkkinen, OpenDigi-hankkeen satoa: opettajat, opettajankouluttajat ja opiskelijat yhteiskehittämässä digipedagogista osaamista, in Merkityksellistä oppimista etsimässä-oppimisympäristöjen moninaisuus nyt ja tulevaisuudessa, ed. by A. Veijola, O.-P. Salo, S. Roos (toim.). Jyväskylän normaalikoulun julkaisuja, 16, 163–180 (2020)
J. Fagerlund, A study on the assessment of introductory computational thinking via scratch programming in primary schools, in Proceedings of the 2018 ACM Conference on International Computing Education Research (ICER ‘18), ed. by L. Malmi, A. Korhonen, R. McCartney, A. Petersen (ACM, New York, 2018), pp. 264–265
J. Fagerlund, P. Häkkinen, M. Vesisenaho, J. Viiri, Assessing 4th grade students’ computational thinking through scratch programming projects. Inf. Educ. 19(4), 611–640 (2020)
J. Fagerlund, M. Vesisenaho, P. Häkkinen, Fourth Grade Students’ Computational Thinking in Pair Programming with Scratch: A Holistic Case Analysis (in review)
J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The Scratch programming language and environment. ACM Trans. Comput. Educ. 10(4), 1–15 (2010). https://doi.org/10.1145/1868358.1868363
B. Garneli, M. Giannakos, K. Chorianopoulos, Computing education in K-12 schools: a review of the literature, in 2015 IEEE Global Engineering Education Conference, Tallinn, Estonia [Conference Paper] (2015)
G. Robles, J.C.R. Hauck, J. Moreno-León, M. Román-González, R. Nombela, C. Grease von Wangenheim, On tools that support the development of computational thinking skills: Some thoughts and future vision, in Proceedings of the International Conference on Computational Thinking Education 2018, ed. by S.C. Kong, D. Andone, G. Biswas, T. Crick, H. U. Hoppe, T. C. Hsu, R. H. Huang, K. Y. Li, C. K. Looi, M. Milrad, J. Sheldon, J. L. Shih, K. F. Sin, M. Tissenbaum, J. Vahrenhold (The Education University of Hong Kong, Hong Kong, 2018)
J. Denner, L. Werner, S. Campe, S. Ortiz, Pair programming: under what conditions is it advantageous for middle school students? J. Res. Technol. Educ. 46(3), 277–296 (2014)
J. Liebenberg, E. Mentz, B. Breed, Pair programming and secondary school girls’ enjoyment of programming and the subject Information Technology (IT). Comput. Sci. Educ. 22(3), 219–236 (2012). https://doi.org/10.1080/08993408.2012.713180
E. Arisholm, H. Gallis, T. Dybé, D.D. SjAberg, Evaluating pair programming with respect to system complexity and programmer expertise. IEEE Trans. Software Eng. 33(2), 65–86 (2007). https://doi.org/10.1109/TSE.2007.17
C. Lewis, N. Shah, How equity and inequity can emerge in pair programming, in Proceedings of the Eleventh Annual International Conference on International Computing Education Research (ICER ‘15) (ACM, New York, NY, 2015), pp. 41–50
M. Ally, F. Darroch, M. Toleman, A framework for understanding the factors influencing pair programming success, in Extreme Programming and Agile Processes in Software Engineering. XP 2005, ed. by H. Baumeister, M. Marchesi, M Holcombe. Lecture Notes in Computer Science, vol. 3556 (Springer, 2005). https://doi.org/10.1007/11499053_10
R. Scherer, F. Siddiq, V.B. Sánchez, A meta-analysis of teaching and learning computer programming: effective instructional approaches and conditions. Comput. Hum. Behav., 109 (2020)
J. Moreno-León, G. Robles, M. Román-González, Dr. Scratch: automatic analysis of scratch projects to assess and foster computational thinking. Revista de Educación a Distancia 15(46), 1–23 (2015)
C.P. Rosé, N. Law, U. Cress, S. Ludvigsen, Highlighting tools and technologies for collaborative learning. Int. J. Comput. Support. Collab. Learn. 14, 1–6 (2019). https://doi.org/10.1007/s11412-019-09297-z
M.J. Baker, J. Andriessen, S. Järvelä, Affective Learning Together: Social and Emotional Dimension of Collaborative Learning (Routledge, 2013). https://doi.org/10.4324/9780203069684
P. Näykki, J. Isohätälä, S. Järvelä, You really brought all your feelings out–scaffolding students to identify the socioemotional and socio-cognitive challenges in collaborative learning. Learn. Cult. Soc. Interact. (2021)
H. Järvenoja, J. Malmberg, S. Järvelä, P. Näykki, H. Kontturi, Investigating students’ situation-specific emotional state and motivational goals during a learning project within one primary school classroom learning. Res. Pract. 5(1), 4–23 (2019). https://doi.org/10.1080/23735082.2018.1554821
P. Näykki, H. Kontturi, V. Seppänen, N. Impiö, S. Järvelä, Teachers as learners–a qualitative exploration of pre-service and in-service teachers’ continuous learning community OpenDigi. J. Educ. Teach. Int. Res. Pedag. (2021). https://doi.org/10.1080/02607476.2021.1904777
D. Kamińska, T. Sapiński, S. Wiak, T. Tikk, R.E. Haamer, E. Avots, G. Anbarjafari, Virtual reality and its applications in education: survey. Information 10(10), 318 (2019)
H. Fischer, M. Heinz, M. Breitenstein, Gamification of learning management systems and user types in higher education, in Proceedings of the 12th European Conference on Game-Based Learning (ECGBL 2018) (Academic Conferences and Publishing Limited, 2018), pp. 91–98
T. Nousiainen, M. Vesisenaho, E. Ahlström, M. Peltonen, S. Fort, G.M. Sacha, Gamifying teacher students’ learning platform: information and communication technology in teacher education courses, in Proceedings of the Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM'20) (Salamanca, Spain, October 21–23, 2020) (ACM, 2020). https://doi.org/10.1145/3434780.3436659
M. Vesisenaho, P. Dillon, S. Havu-Nuutinen, T. Nousiainen, T. Valtonen, R. Wang, Creative improvisations with information and communication technology to support learning: a conceptual and developmental framework. J. Teach. Educ. Educ. 6(3), 229–250 (2017). http://jtee.org/document/issue14/article1.pdf
W.R. Watson, C.J. Mong, C.A. Harris, A case study of the in-class use of a video game for teaching high school history. Comput. Educ. 56(2), 466–474 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Näykki, P. et al. (2022). Facilitating Collaborative Learning with Virtual Reality Simulations, Gaming and Pair Programming. In: Ivanović, M., Klašnja-Milićević, A., Jain, L.C. (eds) Handbook on Intelligent Techniques in the Educational Process. Learning and Analytics in Intelligent Systems, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-04662-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-04662-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04661-2
Online ISBN: 978-3-031-04662-9
eBook Packages: EducationEducation (R0)