Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13257))

Included in the following conference series:

  • 456 Accesses

Abstract

In this paper we study the number \(r_{\texttt {bwt}}\) of equal-letter runs produced by the Burrows-Wheeler transform (BWT) when it is applied to purely morphic finite words, which are words generated by iterating prolongable morphisms. Such a parameter \(r_{\texttt {bwt}}\) is very significant since it provides a measure of the performances of the BWT, in terms of both compressibility and indexing. In particular, we prove that, when BWT is applied to whichever purely morphic finite word on a binary alphabet, \(r_{\texttt {bwt}}\) is \(\mathcal {O}(\log n)\), where n is the length of the word. Moreover, we prove that \(r_{\texttt {bwt}}\) is \(\varTheta (\log n)\) for the binary words generated by a large class of prolongable binary morphisms. These bounds are proved by providing some new structural properties of the bispecial circular factors of such words.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19929-0_3

  2. Brlek, S., Frosini, A., Mancini, I., Pergola, E., Rinaldi, S.: Burrows-Wheeler transform of words defined by morphisms. In: Colbourn, C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol. 11638, pp. 393–404. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25005-8_32

  3. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical report, DIGITAL System Research Center (1994)

    Google Scholar 

  4. Cassaigne, J.: Complexity and special factors. (complexité et facteurs spéciaux.). Bull. Belgian Math. Soc. - Simon Stevin 4(1), 67–88 (1997)

    Google Scholar 

  5. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.: Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms 17(1), 8:1–8:39 (2021)

    Google Scholar 

  6. Constantinescu, S., Ilie, L.: The Lempel-Ziv complexity of fixed points of morphisms. SIAM J. Discret. Math. 21(2), 466–481 (2007)

    Article  MathSciNet  Google Scholar 

  7. Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword complexities of various classes of deterministic developmental languages without interactions. Theor. Comput. Sci. 1(1), 59–75 (1975)

    Article  MathSciNet  Google Scholar 

  8. Ferenczi, S., Zamboni, L.Q.: Clustering words and interval exchanges. J. Integer Seq. 16(2), Article 13.2.1 (2013)

    Google Scholar 

  9. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52, 552–581 (2005)

    Article  MathSciNet  Google Scholar 

  10. Frosini, A., Mancini, I., Rinaldi, S., Romana, G., Sciortino, M.: Burrows-Wheeler transform on purely morphic words. In: DCC, pp. 452–452. IEEE (2022)

    Google Scholar 

  11. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text searching in BWT-runs bounded space. J. ACM 67(1), 2:1–2:54 (2020)

    Google Scholar 

  12. Giuliani, S., Inenaga, S., Lipták, Z., Prezza, N., Sciortino, M., Toffanello, A.: Novel results on the number of runs of the Burrows-Wheeler transform. In: Bureš, T., et al. (eds.) SOFSEM 2021. LNCS, vol. 12607, pp. 249–262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67731-2_18

  13. Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler transform conjecture. In: FOCS, pp. 1002–1013. IEEE (2020)

    Google Scholar 

  14. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors. In: STOC. pp. 827–840. ACM (2018)

    Google Scholar 

  15. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: Burrows-Wheeler transform and Run-Length Enconding. In: Brlek, S., Dolce, F., Reutenauer, C., Vandomme, É. (eds.) WORDS 2017. LNCS, vol. 10432, pp. 228–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66396-8_21

  16. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M., Versari, L.: Measuring the clustering effect of BWT via RLE. Theoret. Comput. Sci. 698, 79–87 (2017)

    Article  MathSciNet  Google Scholar 

  17. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian words. Inform. Process. Lett. 86, 241–246 (2003)

    Article  MathSciNet  Google Scholar 

  18. Navarro, G.: Indexing highly repetitive string collections, part I: repetitiveness measures. ACM Comput. Surv. 54(2), 29:1–29:31 (2021)

    Google Scholar 

  19. Navarro, G., Urbina, C.: On stricter reachable repetitiveness measures. In: Lecroq, T., Touzet, H. (eds.) SPIRE 2021. LNCS, vol. 12944, pp. 193–206. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86692-1_16

  20. Pansiot, J.: Complexité des facteurs des mots infinis engendrés par morphimes itérés. In: ICALP. Lecture Notes Computer Science, vol. 172, pp. 380–389. Springer (1984)

    Google Scholar 

  21. Pansiot, J.J.: Decidability of periodicity for infinite words. RAIRO - Theor. Inform. Appl. 20(1), 43–46 (1986)

    Article  MathSciNet  Google Scholar 

  22. Restivo, A., Rosone, G.: Burrows-Wheeler transform and palindromic richness. Theoret. Comput. Sci. 410(30–32), 3018–3026 (2009)

    Article  MathSciNet  Google Scholar 

  23. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Elsevier Science (1980)

    Google Scholar 

  24. Seward, J.: The bzip2 home page (2006). http://www.bzip.org

  25. Shaeffer, L., Shallit, J.: String attractors for automatic sequences. CoRR abs/2012.06840 (2020)

    Google Scholar 

  26. Simpson, J., Puglisi, S.J.: Words with simple Burrows-Wheeler transforms. Electron. J. Combin. 15 (article R83) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinella Sciortino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frosini, A., Mancini, I., Rinaldi, S., Romana, G., Sciortino, M. (2022). Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words. In: Diekert, V., Volkov, M. (eds) Developments in Language Theory. DLT 2022. Lecture Notes in Computer Science, vol 13257. Springer, Cham. https://doi.org/10.1007/978-3-031-05578-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05578-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05577-5

  • Online ISBN: 978-3-031-05578-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics