Abstract
Note-taking apps on tablets are increasingly becoming the go-to space for managing learning material as a student. In particular, digital note-taking presents certain advantages over traditional pen-and-paper approaches when it comes to organizing and retrieving a library of notes thanks to various search functionalities. This paper presents improvements to the classic textual-input-based search field, by introducing a semantic search that considers the meaning of a user’s search terms and an automatic question-answering process that extracts the answer to the user’s question from their notes for more efficient information retrieval. Additionally, visual methods for finding specific notes are proposed, which do not require the input of text by the user: through the integration of a semantic similarity metric, notes similar to a selected document can be displayed based on common topics. Furthermore, a fully interactive process allows one to search for notes by selecting different types of dynamically generated filters, thus eliminating the need for textual input. Finally, a graph-based visualization is explored for the search results, which clusters semantically similar notes closer together to relay additional information to the user besides the raw search results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atashpendar, A., Grévisse, C., Rothkugel, S.: Enhanced sketchnoting through semantic integration of learning material. In: Florez, H., Leon, M., Diaz-Nafria, J.M., Belli, S. (eds.) ICAI 2019. CCIS, vol. 1051, pp. 340–353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32475-9_25
Beaudoin, L.: Cognitive Productivity: Using Knowledge to Become Profoundly Effective. CogZest (2013)
Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
vor der Brück, T., Pouly, M.: Text similarity estimation based on word embeddings and matrix norms for targeted marketing. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1827–1836 (2019). https://doi.org/10.18653/v1/N19-1181
Burton-Jones, A., Storey, V.C., Sugumaran, V., Purao, S.: A heuristic-based methodology for semantic augmentation of user queries on the web. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 476–489. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39648-2_37
Carter, J.F., Van Matre, N.H.: Note taking versus note having. J. Educ. Psychol. 67(6), 900 (1975). https://doi.org/10.1037/0022-0663.67.6.900
Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964). https://doi.org/10.1145/363958.363994
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019. https://doi.org/10.18653/v1/N19-1423,https://aclanthology.org/N19-1423
Di Vesta, F.J., Gray, G.S.: Listening and note taking. J. Educ. Psychol. 63(1), 8 (1972). https://doi.org/10.1037/H0032243
Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)
Fisher, J.L., Harris, M.B.: Effect of note taking and review on recall. J. Educ. Psychol. 65(3), 321 (1973). https://doi.org/10.1037/h0035640
Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. software. Pract. Exper. 21(11), 1129–1164 (1991). https://doi.org/10.1002/spe.4380211102
Gomaa, W.H., Fahmy, A.A., et al.: A survey of text similarity approaches. Int. J. Comput. Appl. 68(13), 13–18 (2013). https://doi.org/10.5120/11638-7118
Greiner-Petter, A., et al.: Math-word embedding in math search and semantic extraction. Scientometrics 125(3), 3017–3046 (2020). https://doi.org/10.1007/s11192-020-03502-9
Guha, R., McCool, R.: Tap: a semantic web platform. Comput. Netw. 42(5), 557–577 (2003). https://doi.org/10.1016/S1389-1286(03)00225-1
Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 700–709 (2003). https://doi.org/10.1145/775152.775250
Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G., Milios, E.: Information retrieval by semantic similarity. Int. J. Seman. Web Inf. Syst. (IJSWIS) 2(3), 55–73 (2006). https://doi.org/10.4018/jswis.2006070104
Hölscher, C., Strube, G.: Web search behavior of internet experts and newbies. Comput. Netw. 33(1–6), 337–346 (2000). https://doi.org/10.1016/S1389-1286(00)00031-1
Huston, S., Croft, W.B.: Evaluating verbose query processing techniques. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 291–298 (2010). https://doi.org/10.1145/1835449.1835499
Koren, J., Zhang, Y., Liu, X.: Personalized interactive faceted search. In: Proceedings of the 17th International Conference on World Wide Web, pp. 477–486 (2008). https://doi.org/10.1145/1367497.1367562
Kurteva, A., De Ribaupierre, H.: Interface to query and visualise definitions from a knowledge base. In: Brambilla, M., Chbeir, R., Frasincar, F., Manolescu, I. (eds.) ICWE 2021. LNCS, vol. 12706, pp. 3–10. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74296-6_1
Lei, Y., Uren, V., Motta, E.: SemSearch: a search engine for the semantic web. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 238–245. Springer, Heidelberg (2006). https://doi.org/10.1007/11891451_22
Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8 (2011). https://doi.org/10.1145/2063518.2063519
Mihalcea, R., Tarau, P.: Textrank: bringing order into texts. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411 (2004)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - vol. 2, pp. 3111–3119. NIPS 2013, Curran Associates Inc., Red Hook, NY (2013)
Miller, G.A.: WordNet: An Electronic Lexical Database. MIT press (1998)
Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 206–214 (1998). https://doi.org/10.1145/290941.290995
Pasca, M.A., Harabagiu, S.M.: High performance question/answering. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 366–374 (2001). https://doi.org/10.1145/383952.384025
Piccinno, F., Ferragina, P.: From tagme to wat: a new entity annotator. In: Proceedings of the First International Workshop on Entity Recognition and Disambiguation, pp. 55–62. ERD 2014. ACM, New York, NY (2014). https://doi.org/10.1145/2633211.2634350
Piolat, A., Olive, T., Kellogg, R.T.: Cognitive effort during note taking. Appl. Cogn. Psychol. 19(3), 291–312 (2005). https://doi.org/10.1002/acp.1086
Plake, C., Schiemann, T., Pankalla, M., Hakenberg, J., Leser, U.: AliBaba: PubMed as a graph. Bioinformatics 22(19), 2444–2445 (2006). https://doi.org/10.1093/bioinformatics/btl408
Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392. Association for Computational Linguistics, Austin, Texas, November 2016. https://doi.org/10.18653/v1/D16-1264, https://aclanthology.org/D16-1264
Rocchio, J.: Relevance feedback in information retrieval. Smart Retrieval Syst. Exper. Autom. Doc. Process. 313–323 (1971)
Soto, A.J., Przybyła, P., Ananiadou, S.: Thalia: semantic search engine for biomedical abstracts. Bioinformatics 35(10), 1799–1801 (2019). https://doi.org/10.1093/bioinformatics/bty871
Srihari, R., Li, W.: Information extraction supported question answering. Tech. rep, CYMFONY NET INC WILLIAMSVILLE NY (1999)
Tablan, V., Bontcheva, K., Roberts, I., Cunningham, H.: Mímir: an open-source semantic search framework for interactive information seeking and discovery. J. Web Semant. 30, 52–68 (2015). https://doi.org/10.1016/j.websem.2014.10.002
Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 3(1), 743–767 (1963). https://doi.org/10.1112/plms/s3-13.1.743
Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: Minilm: deep self-attention distillation for task-agnostic compression of pre-trained transformers. In: NeurIPS 2020. ACM, February 2020. https://www.microsoft.com/en-us/research/publication/minilm-deep-self-attention-distillation-for-task-agnostic-compression-of-pre-trained-transformers/
Whetzel, P.L., et al.: Bioportal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucleic acids Res. 39(suppl_2), W541–W545 (2011). https://doi.org/10.1093/nar/gkr469
White, R.W., Dumais, S.T., Teevan, J.: Characterizing the influence of domain expertise on web search behavior. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pp. 132–141 (2009). https://doi.org/10.1145/1498759.1498819
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Atashpendar, A., Grévisse, C., Botev, J., Rothkugel, S. (2022). Semantic and Interactive Search in an Advanced Note-Taking App for Learning Material. In: Zaphiris, P., Ioannou, A. (eds) Learning and Collaboration Technologies. Designing the Learner and Teacher Experience. HCII 2022. Lecture Notes in Computer Science, vol 13328. Springer, Cham. https://doi.org/10.1007/978-3-031-05657-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-05657-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05656-7
Online ISBN: 978-3-031-05657-4
eBook Packages: Computer ScienceComputer Science (R0)