Abstract
Process mining techniques make the underlying processes in organizations transparent. Historical event data are used to perform conformance checking and performance analyses. Analyzing a single process and providing visual insights has been the focus of most process mining techniques. However, comparing two processes or a single process in different situations is essential for process improvement. Different approaches have been proposed for process comparison. However, most of the techniques are either relying on the aggregated KPIs or their comparisons are based on process models, i.e., the flow of activities. Existing techniques are not able to provide understandable and insightful results for process owners. The current paper describes a tool that provides aggregated and detailed comparisons of two processes starting from their event logs using innovative visualizations. The visualizations provided by the tool are interactive. We exploit some techniques recently proposed in the literature, e.g., stochastic conformance checking and the performance spectrum, for conformance and performance comparison.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2023 Internet of Production- Project ID: 390621612. We also thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P., Guo, S., Gorissen, P.: Comparative process mining in education: an approach based on process cubes. In: Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) SIMPDA 2013. LNBIP, vol. 203, pp. 110–134. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46436-6_6
Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for python (PM4Py): bridging the gap between process-and data science. In: Proceedings of the ICPM Demo Track 2019, Co-located with 1st International Conference on Process Mining (ICPM 2019), Aachen, Germany, 24–26 June 2019, pp. 13–16 (2019). http://ceur-ws.org/Vol-2374/
Bolt, A., van der Aalst, W.M.P.: Multidimensional process mining using process cubes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 102–116. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19237-6_7
Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-99414-7
Denisov, V., Fahland, D., van der Aalst, W.M.P.: Predictive performance monitoring of material handling systems using the performance spectrum. In: International Conference on Process Mining, ICPM 2019, Aachen, 24–26 June 2019, pp. 137–144. IEEE (2019)
Denisov, V., Fahland, D., van der Aalst, W.M. P.: Unbiased, fine-grained description of processes performance from event data. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 139–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_9
Hornix, P.T.: Performance analysis of business processes through process mining. Master’s Thesis, Eindhoven University of Technology (2007)
Klijn, E.L., Fahland, D.: Performance mining for batch processing using the performance spectrum. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 172–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_15
Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance checking. In: BPM Forum 2019, pp. 127–143 (2019)
Partington, A., Wynn, M., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for clinical processes: a comparative analysis of four australian hospitals. ACM Trans. Manage. Inf. Syst. 5(4) (2015). https://doi.org/10.1145/2629446
Pourbafrani, M., van der Aalst, W.M.P.: GenCPN: automatic CPN model generation of processes. In: 3rd International Conference ICPM 2021, Demo Track (2021)
Pourbafrani, M., van der Aalst, W.M.P.: Interactive process improvement using simulation of enriched process trees. In: 2nd International Workshop on AI-Enabled Process Automation (2021)
Pourbafrani, M., Jiao, S., van der Aalst, W.M. P.: SIMPT: Process improvement using interactive simulation of time-aware process trees. In: Cherfi, S., Perini, A., Nurcan, S. (eds.) RCIS 2021. LNBIP, vol. 415, pp. 588–594. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75018-3_40
Rafiei, M., van der Aalst, W.M. P.: Towards quantifying privacy in process mining. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 385–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_29
Rafiei, M., van der Aalst, W.M.P.: Group-based privacy preservation techniques for process mining. Data Knowl. Eng. 134, 101908 (2021). https://doi.org/10.1016/j.datak.2021.101908
Song, M., van der Aalst, W.M.P.: Supporting process mining by showing events at a glance. In: Proceedings of the 17th Annual Workshop on Information Technologies and Systems (WITS), pp. 139–145 (2007)
Syamsiyah, A., et al.: Business process comparison: a methodology and case study, pp. 253–267 (2017)
Vogelgesang, T., Kaes, G., Rinderle-Ma, S., Appelrath, H.J.: Multidimensional process mining: questions, requirements, and limitations. In: CAISE 2016 Forum, pp. 169–176 (2016). http://eprints.cs.univie.ac.at/4689/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pourbafrani, M., Rafiei, M., Berti, A., van der Aalst, W.M.P. (2022). Interactive Business Process Comparison Using Conformance and Performance Insights - A Tool. In: Guizzardi, R., Ralyté, J., Franch, X. (eds) Research Challenges in Information Science. RCIS 2022. Lecture Notes in Business Information Processing, vol 446. Springer, Cham. https://doi.org/10.1007/978-3-031-05760-1_50
Download citation
DOI: https://doi.org/10.1007/978-3-031-05760-1_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05759-5
Online ISBN: 978-3-031-05760-1
eBook Packages: Computer ScienceComputer Science (R0)