Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interactive Business Process Comparison Using Conformance and Performance Insights - A Tool

  • Conference paper
  • First Online:
Research Challenges in Information Science (RCIS 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 446))

Included in the following conference series:

  • 2187 Accesses

Abstract

Process mining techniques make the underlying processes in organizations transparent. Historical event data are used to perform conformance checking and performance analyses. Analyzing a single process and providing visual insights has been the focus of most process mining techniques. However, comparing two processes or a single process in different situations is essential for process improvement. Different approaches have been proposed for process comparison. However, most of the techniques are either relying on the aggregated KPIs or their comparisons are based on process models, i.e., the flow of activities. Existing techniques are not able to provide understandable and insightful results for process owners. The current paper describes a tool that provides aggregated and detailed comparisons of two processes starting from their event logs using innovative visualizations. The visualizations provided by the tool are interactive. We exploit some techniques recently proposed in the literature, e.g., stochastic conformance checking and the performance spectrum, for conformance and performance comparison.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2023 Internet of Production- Project ID: 390621612. We also thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/mbafrani/VisualComparison2EventLogs.

  2. 2.

    https://www.researchgate.net/project/Forward-looking-in-Process-Mining.

  3. 3.

    https://www.iop.rwth-aachen.de.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

  2. van der Aalst, W.M.P., Guo, S., Gorissen, P.: Comparative process mining in education: an approach based on process cubes. In: Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) SIMPDA 2013. LNBIP, vol. 203, pp. 110–134. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46436-6_6

  3. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for python (PM4Py): bridging the gap between process-and data science. In: Proceedings of the ICPM Demo Track 2019, Co-located with 1st International Conference on Process Mining (ICPM 2019), Aachen, Germany, 24–26 June 2019, pp. 13–16 (2019). http://ceur-ws.org/Vol-2374/

  4. Bolt, A., van der Aalst, W.M.P.: Multidimensional process mining using process cubes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 102–116. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19237-6_7

  5. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-99414-7

  6. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Predictive performance monitoring of material handling systems using the performance spectrum. In: International Conference on Process Mining, ICPM 2019, Aachen, 24–26 June 2019, pp. 137–144. IEEE (2019)

    Google Scholar 

  7. Denisov, V., Fahland, D., van der Aalst, W.M. P.: Unbiased, fine-grained description of processes performance from event data. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 139–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_9

  8. Hornix, P.T.: Performance analysis of business processes through process mining. Master’s Thesis, Eindhoven University of Technology (2007)

    Google Scholar 

  9. Klijn, E.L., Fahland, D.: Performance mining for batch processing using the performance spectrum. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 172–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_15

  10. Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance checking. In: BPM Forum 2019, pp. 127–143 (2019)

    Google Scholar 

  11. Partington, A., Wynn, M., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for clinical processes: a comparative analysis of four australian hospitals. ACM Trans. Manage. Inf. Syst. 5(4) (2015). https://doi.org/10.1145/2629446

  12. Pourbafrani, M., van der Aalst, W.M.P.: GenCPN: automatic CPN model generation of processes. In: 3rd International Conference ICPM 2021, Demo Track (2021)

    Google Scholar 

  13. Pourbafrani, M., van der Aalst, W.M.P.: Interactive process improvement using simulation of enriched process trees. In: 2nd International Workshop on AI-Enabled Process Automation (2021)

    Google Scholar 

  14. Pourbafrani, M., Jiao, S., van der Aalst, W.M. P.: SIMPT: Process improvement using interactive simulation of time-aware process trees. In: Cherfi, S., Perini, A., Nurcan, S. (eds.) RCIS 2021. LNBIP, vol. 415, pp. 588–594. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75018-3_40

  15. Rafiei, M., van der Aalst, W.M. P.: Towards quantifying privacy in process mining. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 385–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_29

  16. Rafiei, M., van der Aalst, W.M.P.: Group-based privacy preservation techniques for process mining. Data Knowl. Eng. 134, 101908 (2021). https://doi.org/10.1016/j.datak.2021.101908

    Article  Google Scholar 

  17. Song, M., van der Aalst, W.M.P.: Supporting process mining by showing events at a glance. In: Proceedings of the 17th Annual Workshop on Information Technologies and Systems (WITS), pp. 139–145 (2007)

    Google Scholar 

  18. Syamsiyah, A., et al.: Business process comparison: a methodology and case study, pp. 253–267 (2017)

    Google Scholar 

  19. Vogelgesang, T., Kaes, G., Rinderle-Ma, S., Appelrath, H.J.: Multidimensional process mining: questions, requirements, and limitations. In: CAISE 2016 Forum, pp. 169–176 (2016). http://eprints.cs.univie.ac.at/4689/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Pourbafrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pourbafrani, M., Rafiei, M., Berti, A., van der Aalst, W.M.P. (2022). Interactive Business Process Comparison Using Conformance and Performance Insights - A Tool. In: Guizzardi, R., Ralyté, J., Franch, X. (eds) Research Challenges in Information Science. RCIS 2022. Lecture Notes in Business Information Processing, vol 446. Springer, Cham. https://doi.org/10.1007/978-3-031-05760-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05760-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05759-5

  • Online ISBN: 978-3-031-05760-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics