Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning Discriminative Representation Base on Attention for Uplift

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13282))

Included in the following conference series:

Abstract

Uplift modeling aims to estimate Conditional Average Treatment Effects (CATE) for a given factor, such as a marketing intervention or a medical treatment. Given covariates of a single subject under different treatment indicators, most of existing approaches, especially those based on deep learning, either learn the same representation from a single model or learn different representations from two separate models. Thus, these methods could not learn discriminative representations or could not utilize both information of control and treatment group. In this paper, we develop an attentive neural uplift model to alleviate the above shortcomings by utilizing attention mechanisms to map the original covariate space \(\mathcal {X}\) into a latent space \(\mathcal {Z}\) in a single model. Given covariates of a subject, the learned representations in space \(\mathcal {Z}\) which we called after-treatment representation are discriminative under different treatment indicators, thus can model potential outcomes more effectively. Moreover, the model is trained on a single neural network so that the information shared by treatment and control group is utilised. Experiments on synthetic and real-world datasets show our proposed method is competitive with the state-of-the-art.

G. Xu and C. Yin—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athey, S., Imbens, G.W.: Machine learning methods for estimating heterogeneous causal effects. Stat 1050, 1–26 (2015)

    Google Scholar 

  2. Betlei, A., Diemert, E., Amini, M.R.: Uplift modeling with generalization guarantees. In: Proceedings of KDD (2021)

    Google Scholar 

  3. Cai, T., Tian, L., Wong, P.H., Wei, L.: Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics 12, 270–282 (2011)

    Article  Google Scholar 

  4. Chen, H., Harinen, T., Lee, J.Y., Yung, M., Zhao, Z.: Causalml: Python package for causal machine learning. arXiv preprint arXiv:2002.11631 (2020)

  5. Cho, K., Courville, A., Bengio, Y.: Describing multimedia content using attention-based encoder-decoder networks. IEEE Trans. Multimedia 17, 1875–1886 (2015)

    Article  Google Scholar 

  6. Devriendt, F., Moldovan, D., Verbeke, W.: A literature survey and experimental evaluation of the state-of-the-art in uplift modeling: a stepping stone toward the development of prescriptive analytics. Big Data 6, 13–41 (2018)

    Article  Google Scholar 

  7. Devriendt, F., Van Belle, J., Guns, T., Verbeke, W.: Learning to rank for uplift modeling. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  8. Diemert, E., Betlei, A., Renaudin, C., Amini, M.R.: A large scale benchmark for uplift modeling. In: Proceedings of the KDD (2018)

    Google Scholar 

  9. D’Amour, A., Ding, P., Feller, A., Lei, L., Sekhon, J.: Overlap in observational studies with high-dimensional covariates. J. Econom. 221, 644–654 (2021)

    Article  MathSciNet  Google Scholar 

  10. Galassi, A., Lippi, M., Torroni, P.: Attention in natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32, 4291–4308 (2020)

    Article  Google Scholar 

  11. Grimmer, J., Messing, S., Westwood, S.J.: Estimating heterogeneous treatment effects and the effects of heterogeneous treatments with ensemble methods. Polit. Anal. 25, 413–434 (2017)

    Article  Google Scholar 

  12. Gubela, R., Bequé, A., Lessmann, S., Gebert, F.: Conversion uplift in e-commerce: a systematic benchmark of modeling strategies. Int. J. Inf. Technol. Decis. Mak. 18, 747–791 (2019)

    Article  Google Scholar 

  13. Holland, P.W.: Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986)

    Article  MathSciNet  Google Scholar 

  14. Jaskowski, M., Jaroszewicz, S.: Uplift modeling for clinical trial data. In: ICML Workshop on Clinical Data Analysis (2012)

    Google Scholar 

  15. Künzel, S.R., Sekhon, J.S., Bickel, P.J., Yu, B.: Metalearners for estimating heterogeneous treatment effects using machine learning. In: Proceedings of the National Academy of Sciences (2019)

    Google Scholar 

  16. Lo, V.S.: The true lift model: a novel data mining approach to response modeling in database marketing. ACM SIGKDD Explor. Newsl 4, 78–86 (2002)

    Article  Google Scholar 

  17. Louizos, C., Shalit, U., Mooij, J., Sontag, D., Zemel, R., Welling, M.: Causal effect inference with deep latent-variable models. arXiv preprint arXiv:1705.08821 (2017)

  18. Nie, X., Wager, S.: Quasi-oracle estimation of heterogeneous treatment effects. Biometrika 108, 299–319 (2021)

    Article  MathSciNet  Google Scholar 

  19. Pearl, J.: Causal inference in statistics: an overview. Stat. Surv. 3, 96–146 (2009)

    Article  MathSciNet  Google Scholar 

  20. Radcliffe, N.J.: Hillstrom’s MineThatData Email Analytics Challenge: An Approach Using Uplift Modelling. Stochastic Solutions Limited, Edinburgh (2008)

    Google Scholar 

  21. Radcliffe, N.J., Surry, P.D.: Real-world uplift modelling with significance-based uplift trees. White Paper TR-2011-1, Stochastic Solutions (2011)

    Google Scholar 

  22. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688 (1974)

    Article  Google Scholar 

  23. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. J. Am. Stat. Assoc. 100, 322–331 (2005)

    Article  MathSciNet  Google Scholar 

  24. Shi, C., Blei, D.M., Veitch, V.: Adapting neural networks for the estimation of treatment effects. arXiv preprint arXiv:1906.02120 (2019)

  25. Splawa-Neyman, J., Dabrowska, D.M., Speed, T.: On the application of probability theory to agricultural experiments. Essay on principles. section 9. Statistical Science (1990)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the NeurIPS (2017)

    Google Scholar 

  27. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113, 1228–1242 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wang, F., Tax, D.M.: Survey on the attention based RNN model and its applications in computer vision. arXiv preprint arXiv:1601.06823 (2016)

  29. Zhang, W., Li, J., Liu, L.: A unified survey of treatment effect heterogeneity modelling and uplift modelling. ACM Comput. Surv. (CSUR) 54, 1–36 (2021)

    Google Scholar 

  30. Zhao, Y., Fang, X., Simchi-Levi, D.: A practically competitive and provably consistent algorithm for uplift modeling. In: Proceedings of the ICDM (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, G. et al. (2022). Learning Discriminative Representation Base on Attention for Uplift. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13282. Springer, Cham. https://doi.org/10.1007/978-3-031-05981-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05981-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05980-3

  • Online ISBN: 978-3-031-05981-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics