Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Distributed Game-Theoretic Approach to IaaS Cloud Brokering

  • Conference paper
  • First Online:
Euro-Par 2021: Parallel Processing Workshops (Euro-Par 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13098))

Included in the following conference series:

  • 859 Accesses

Abstract

We consider the problem of profit optimization for cloud brokerage service in the IaaS environment. We replace this optimization problem with a game-theoretic approach where players tend to achieve a solution by reaching a Nash equilibrium. We propose a fully distributed algorithm based on applying the Spatial Prisoner’s Dilemma (SPD) game and a phenomenon of collective behavior of players participating in the game composed of two classes of automata-based agents - Cellular Automata (CA) and Learning Automata (LA). We introduce dynamic strategies like local profit sharing, mutation, and competition, which stimulate the evolutionary process of developing collective behavior among players to maximize their profit margin. We present the results of an experimental study showing the emergence of collective behavior in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The price is for Linux Instances (EU Frankfurt) with full upfront payment on 1-year term reservation as of July, 2021.

References

  1. Aazam, M., Huh, E., St-Hilaire, M., Lung, C., Lambadaris, I.: Cloud customer’s historical record based resource pricing. IEEE Trans. Parallel Distrib. Syst. 27(7), 1929–1940 (2016). https://doi.org/10.1109/TPDS.2015.2473850

    Article  Google Scholar 

  2. Aazam, M., Huh, E.N.: Cloud broker service-oriented resource management model. Trans. Emerg. Telecommun. Technol. 28(2), 29–37 (2017). https://doi.org/10.1002/ett.2937

    Article  Google Scholar 

  3. Guan, Z., Melodia, T.: The value of cooperation: minimizing user costs in multi-broker mobile cloud computing networks. IEEE Trans. Cloud Comput. 5(4), 780–791 (2017). https://doi.org/10.1109/TCC.2015.2440257

    Article  Google Scholar 

  4. Guzek, M., Gniewek, A., Bouvry, P., Musial, J., Blazewicz, J.: Cloud brokering: current practices and upcoming challenges. IEEE Cloud Comput. 2(2), 40–47 (2015). https://doi.org/10.1109/MCC.2015.32

    Article  Google Scholar 

  5. Katsumata, Y., Ishida, Y.: On a membrane formation in a spatio-temporally generalized prisoner’s dilemma. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 60–66. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79992-4_8

    Chapter  Google Scholar 

  6. Kim, S., Kang, D., Kim, W., Chen, M., Youn, C.: A science gateway cloud with cost-adaptive VM management for computational science and applications. IEEE Syst. J. 11(1), 173–185 (2017). https://doi.org/10.1109/JSYST.2015.2501750

    Article  Google Scholar 

  7. Musial, J., et al.: Cloud brokering with bundles: multi-objective optimization of services selection. Found. Comput. Decis. Sci. 44, 407–426 (2019). https://doi.org/10.2478/fcds-2019-0020

    Article  Google Scholar 

  8. Nesmachnow, S., Iturriaga, S., Dorronsoro, B.: Efficient heuristics for profit optimization of virtual cloud brokers. IEEE Comput. Intell. Mag. 10(1), 33–43 (2015). https://doi.org/10.1109/MCI.2014.2369893

    Article  Google Scholar 

  9. Prasad, G.V., Prasad, A.S., Rao, S.: A combinatorial auction mechanism for multiple resource procurement in cloud computing. IEEE Trans. Cloud Comput. 6(4), 904–914 (2018). https://doi.org/10.1109/TCC.2016.2541150

    Article  Google Scholar 

  10. Rajavel, R., Thangarathanam, M.: Adaptive probabilistic behavioural learning system for the effective behavioural decision in cloud trading negotiation market. Futur. Gener. Comput. Syst. 58, 29–41 (2016). https://doi.org/10.1016/j.future.2015.12.007

    Article  Google Scholar 

  11. Rossi, F., Bandyopadhyay, S., Wolf, M., Pavone, M.: Review of multi-agent algorithms for collective behavior: a structural taxonomy. IFAC-PapersOnLine 51(12), 112–117 (2018). https://doi.org/10.1016/j.ifacol.2018.07.097. iFAC Workshop on Networked & Autonomous Air & Space Systems NAASS 2018

  12. Seredyński, F., Gąsior, J.: Emergence of collective behavior in large cellular automata-based multi-agent systems. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11509, pp. 676–688. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20915-5_60

    Chapter  Google Scholar 

  13. Wang, W., Niu, D., Liang, B., Li, B.: Dynamic cloud instance acquisition via IaaS cloud brokerage. IEEE Trans. Parallel Distrib. Syst. 26(6), 1580–1593 (2015). https://doi.org/10.1109/TPDS.2014.2326409

    Article  Google Scholar 

  14. Zhang, R., Wu, K., Li, M., Wang, J.: Online resource scheduling under concave pricing for cloud computing. IEEE Trans. Parallel Distrib. Syst. 27, 1131–1145 (2015). https://doi.org/10.1109/TPDS.2015.2432799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Gąsior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gąsior, J., Seredyński, F. (2022). A Distributed Game-Theoretic Approach to IaaS Cloud Brokering. In: Chaves, R., et al. Euro-Par 2021: Parallel Processing Workshops. Euro-Par 2021. Lecture Notes in Computer Science, vol 13098. Springer, Cham. https://doi.org/10.1007/978-3-031-06156-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06156-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06155-4

  • Online ISBN: 978-3-031-06156-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics