Abstract
This paper presents an end-to-end approach for single-view 3D object reconstruction in a realistic environment. Most of the existing reconstruction approaches are trained on synthetic data and they fail when evaluated on real images. On the other hand, some of the methods require pre-processing in order to separate an object from the background. In contrast, the proposed approach learns to compute stable features for an object by reducing the influence of image background. This is achieved by feeding two images simultaneously to the model; synthetic with white background and its realistic variant with a natural background. The encoder extracts the common features from both images and hence separates features of the object from features of the background. The extracted features allow the model to predict an accurate 3D object surface from a real image. The approach is evaluated for both real images of the Pix3D dataset and realistic images rendered from the ShapeNet dataset. The results are compared with state-of-the-art approaches in order to highlight the significance of the proposed approach. Our approach achieves an increase in reconstruction accuracy of approximately 6.1% points in F\(_1\) score with respect to Mesh R-CNN on the Pix3D dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Z., Isler, V., Lee, D.D.: Surface HOF: surface reconstruction from a single image using higher order function networks. In 2020 IEEE International Conference on Image Processing (ICIP), pp. 2666–2670 (2020)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)
Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.: CVXNET: learnable convex decomposition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 31–44 (2020)
Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9785–9795 (2019)
Spezialetti, R., Tan, D.J., Tonioni, A., Tateno, K., Tombari, F.: A divide et Impera approach for 3D shape reconstruction from multiple views. In: 2020 International Conference on 3D Vision (3DV), pp. 160–170 (2020)
Yang, B., Rosa, S., Markham, A., Trigoni, N., Wen, H.: Dense 3D object reconstruction from a single depth view. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2820–2834 (2018)
Gupta, K., Jabbireddy, S., Shah, K., Shrivastava, A., Zwicker, M.: Improved modeling of 3D shapes with multi-view depth maps. In: International Conference on 3D Vision (3DV), pp. 71–80 (2020)
Gu, J., et al.: Weakly-supervised 3D shape completion in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 283–299. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_17
Yin, K., Chen, Z., Chaudhuri, S., Fisher, M., Kim, V.G., Zhang, H.: COALESCE: component assembly by learning to synthesize connections. In: 2020 International Conference on 3D Vision (3DV), pp. 61–70 (2020)
Lombardi, S., Oswald, M.R., Pollefeys, M.: Scalable point cloud-based reconstruction with local implicit functions. In: 2020 International Conference on 3D Vision (3DV), pp. 997–1007 (2020)
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv:1512.03012 (2015)
Chen, Z., Tagliasacchi, A., Zhang, H.: BSP-NET: generating compact meshes via binary space partitioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 45–54 (2020)
Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, W.T., Tenenbaum, J.B.: MarrNet: 3D shape reconstruction via 2.5 D sketches. In: 31st Conference on Neural Information Processing Systems (2017)
Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., Tenenbaum, J.B., Freeman, W.T.: Pix3D: dataset and methods for single-image 3D shape modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2974–2983 (2018)
Xie, H., Yao, H., Zhang, S., Zhou, S., Sun, W.: Pix2Vox++: multi-scale context-aware 3D object reconstruction from single and multiple images. Int. J. Comput. Vision 128(12), 2919–2935 (2020)
Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29
Feng, Q., Luo, Y., Luo, K., Yang, Y.: Look, cast and mold: learning 3D shape manifold from single-view synthetic data. arXiv preprint arXiv:2103.04789 (2021)
Pinheiro, P.O., Rostamzadeh, N., Ahn, S.: Domain-adaptive single-view 3D reconstruction. In: IEEE International Conference on Computer Vision, pp. 7638–7647 (2019)
Yang, S., Xu, M., Xie, H., Perry, S., Xia, J.: Single-view 3D object reconstruction from shape priors in memory. arXiv preprint arXiv:2003.03711, pp. 3152–3161 (2020)
Kaya, B., Timofte, R.: Self-supervised 2D image to 3D shape translation with disentangled representations. In: 2020 International Conference on 3D Vision (3DV), pp. 1039–1048 (2020)
Salvi, A., Gavenski, N., Pooch, E., Tasoniero, F., Barros, R.: Attention-based 3D object reconstruction from a single image. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020)
Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492 (2010)
Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9157–9166 (2019)
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zohaib, M., Taiana, M., Bue, A.D. (2022). Towards Reconstruction of 3D Shapes in a Realistic Environment. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-06430-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06429-6
Online ISBN: 978-3-031-06430-2
eBook Packages: Computer ScienceComputer Science (R0)