Abstract
Change analysis, an automated process to measure the change on the Earth surface by jointly analyzing two temporally separated images, becomes a significant research domain to understand the changes in land-cover, it provides important knowledge and data to be used in many other fields such as land-cover analyses, mapping generation, planning traffics, etc. This paper describes and evaluates an unsupervised method for change detection in satellite images by following two major steps: The first step focuses on data reduction using the ICA algorithm to improve the efficiency of the classifier. The second step deals with the Fuzzy C-Means classification method to find specified clusters. Changed and unchanged areas are mapped in a binary image. Three different datasets are used to evaluate the result performance of the proposed system, and experiments results show that the used approach can detect changes in multi-temporal satellite images with good accuracy. To show the effectiveness, the comparisons with some other methods from state-of-the-art are shown on multitemporal images captured by Radarsat1 satellite SAR on the Ottawa area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kongapai, P., Sompongchaiyakul, P., Jitpraphai, S.: Assessing coastal land cover changes after the 2004 tsunami using remote sensing and GIS approaches. Walailak J. Sci. Tech. 13(9), 9 (2016)
Nackaerts, K., Vaesen, K., Muys, B., Coppin, P.: Comparative performance of a modified change vector analysis in forest change detection. Int. J. Remote Sens. 26(5), 5 (2005). https://doi.org/10.1080/0143116032000160462
Lu, D., Mausel, P., Batistella, M., Moran, E.: Land‐cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study. Int. J. Remote Sens. 26(1), 1 (2005). https://doi.org/10.1080/01431160410001720748
Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 4 (2012). https://doi.org/10.1109/TIP.2011.2170702
Hou, B., Wei, Q., Zheng, Y., Wang, S.: Unsupervised change detection in SAR image based on gauss-log ratio image fusion and compressed projection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(8), 8 (2014). https://doi.org/10.1109/JSTARS.2014.2328344
Wang, Y., Du, L., Dai, H.: Unsupervised SAR image change detection based on SIFT keypoints and region information. IEEE Geosci. Remote Sens. Lett. 13(7), 7 (2016). https://doi.org/10.1109/LGRS.2016.2554606
Celik, T.: Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 6(4), 772–776 (2009). https://doi.org/10.1109/LGRS.2009.2025059
Maarir, A., Ider, A.A., Bouikhalene, B.: Hierarchical dimensionality reduction based fuzzy c-means methods for change detection in temporal satellite images. In: Ezziyyani, M. (ed.) AI2SD 2019. AISC, vol. 1105, pp. 273–286. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36674-2_29
Jolliffe, I.T.: Principal Component Analysis. 2nd ed. Springer-Verlag, New York (2002). https://www.springer.com/gp/book/9780387954424. Accessed 11 June 2019
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification (2nd Edition). Wiley-Interscience, New York (2000)
Sarp, G., Ozcelik, M.: Water body extraction and change detection using time series: a case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 11(3), 3 (2017). https://doi.org/10.1016/j.jtusci.2016.04.005
Zhu, B., Gao, H., Wang, X., Xu, M., Zhu, X.: Change detection based on the combination of improved SegNet neural network and morphology, pp. 55–59, June 2018. https://doi.org/10.1109/ICIVC.2018.8492747
Izadi, M., Saeedi, P.: Automatic building detection in aerial images using a hierarchical feature based image segmentation. In: 2010 20th International Conference on Pattern Recognition, pp. 472–475, August 2010. https://doi.org/10.1109/ICPR.2010.123
Maarir, A., Bouikhalene, B., Chajri, Y.: Building detection from satellite images based on curvature scale space method. Walailak J. Sci. Technol. (WJST) 14(6), 517–525 (2016). 10.14456/vol14iss6pp%p
Wang, Q., Zhang, X., Chen, G., Dai, F., Gong, Y., Zhu, K.: Change detection based on Faster R-CNN for high-resolution remote sensing images. Remote Sens. Lett. 9(10), 923–932 (2018). https://doi.org/10.1080/2150704X.2018.1492172
Pirasteh, S., et al.: Developing an algorithm for buildings extraction and determining changes from airborne LiDAR, and comparing with R-CNN method from drone images. Remote. Sens. 11, 1272 (2019). https://doi.org/10.3390/RS11111272
Pang, S., Hu, X., Zhang, M., Cai, Z., Liu, F.: Co-segmentation and superpixel-based graph cuts for building change detection from bi-temporal digital surface models and aerial images. Remote Sens. 11(6), 6(2019). https://doi.org/10.3390/rs11060729
Huo, C., Chen, K., Ding, K., Zhou, Z., Pan, C.: Learning relationship for very high resolution image change detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 9(8), 3384–3394 (2016). https://doi.org/10.1109/JSTARS.2016.2569598
Che, M., Gamba, P.: Intra-urban change analysis using sentinel-1 and nighttime light data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 12(4), 1134–1142 (2019). https://doi.org/10.1109/JSTARS.2019.2899881
Ghosh, A., Mishra, N.S., Ghosh, S.: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf. Sci. 181(4), 4 (2011). https://doi.org/10.1016/j.ins.2010.10.016
Tomowski, D., Ehlers, M., Klonus, S.: Colour and texture based change detection for urban disaster analysis. In: 2011 Joint Urban Remote Sensing Event, April 2011, pp. 329–332 (2011). https://doi.org/10.1109/JURSE.2011.5764786
Gu, W., Lv, Z., Hao, M.: Change detection method for remote sensing images based on an improved Markov random field. Multimed. Tools App. 76(17), 17719–17734 (2015). https://doi.org/10.1007/s11042-015-2960-3
Li, Z., Shi, W., Zhang, H., Hao, M.: Change detection based on Gabor wavelet features for very high resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 14(5), 5 (2017). https://doi.org/10.1109/LGRS.2017.2681198
Wu, C., Du, B., Cui, X., Zhang, L.: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sens. Environ. 199(Suppl C), 241–255 (2017). https://doi.org/10.1016/j.rse.2017.07.009
Sharma, A., Gulati, T.: Change detection from remotely sensed images based on stationary wavelet transform. Int. J. Elect. Comput. Eng. (IJECE) 7(6), 6 (2017)
Shao, P., Shi, W., He, P., Hao, M., Zhang, X.: Novel approach to unsupervised change detection based on a robust semi-supervised FCM clustering algorithm. Remote Sens. 8(3), 3 (2016). https://doi.org/10.3390/rs8030264
Taati, A., Sarmadian, F., Mousavi, A., Pour, C.T.H., Shahir, A.H.E.: Land use classification using support vector machine and maximum likelihood algorithms by Landsat 5 TM images. Walailak J. Sci. Tech. 12(8), 8 (2015)
Goel, S., Verma, A., Goel, S., Juneja, K.: ICA in image processing: a survey. In: 2015 IEEE International Conference on Computational Intelligence Communication Technology, February 2015, pp. 144–149 (2015). https://doi.org/10.1109/CICT.2015.91
Lim, J.S.: Two-dimensional signal and image processing (1990). Accessed 27 Sep 2017. http://adsabs.harvard.edu/abs/1990ph...book.....l
Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications, vol. 8. MIT Press, Cambridge (1964)
Matteson, D.S., Tsay, R.S.: Independent component analysis via distance covariance. J. Am. Statist. Assoc. 112(518), 518 (2017). https://doi.org/10.1080/01621459.2016.1150851
Shen, H., Jegelka, S., Gretton, A.: Fast kernel-based independent component analysis. IEEE Trans. Signal Process. 57(9), 9 (2009). https://doi.org/10.1109/TSP.2009.2022857
Amin, M.R.M., Bejo, S.K., Ismail, W.I.W., Mashohor, S.: Colour extraction of agarwood images for fuzzy c-means classification. Walailak J. Sci. Technol. (WJST) 9(4), 445–459 (2012). https://doi.org/10.2004/wjst.v9i4.211
Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 3 (1973). https://doi.org/10.1080/01969727308546046
Yang, M.-S.: A survey of fuzzy clustering. Math. Comput. Modell. 18(11), 11 (1993). https://doi.org/10.1016/0895-7177(93)90202-A
Li, H.C., Celik, T., Longbotham, N., Emery, W.J.: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering. IEEE Geosci. Remote Sens. Lett. 12(12), 12 (2015). https://doi.org/10.1109/LGRS.2015.2484220
Gong, M., Su, L., Jia, M., Chen, W.: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst. 22(1), 1 (2014). https://doi.org/10.1109/TFUZZ.2013.2249072
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Maarir, A., Azougaghe, Es., Bouikhalene, B. (2022). Automatic Change Detection Based on the Independent Component Analysis and Fuzzy C-Means Methods. In: Fakir, M., Baslam, M., El Ayachi, R. (eds) Business Intelligence. CBI 2022. Lecture Notes in Business Information Processing, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-031-06458-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-06458-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06457-9
Online ISBN: 978-3-031-06458-6
eBook Packages: Computer ScienceComputer Science (R0)