Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Change Detection Based on the Independent Component Analysis and Fuzzy C-Means Methods

  • Conference paper
  • First Online:
Business Intelligence (CBI 2022)

Abstract

Change analysis, an automated process to measure the change on the Earth surface by jointly analyzing two temporally separated images, becomes a significant research domain to understand the changes in land-cover, it provides important knowledge and data to be used in many other fields such as land-cover analyses, mapping generation, planning traffics, etc. This paper describes and evaluates an unsupervised method for change detection in satellite images by following two major steps: The first step focuses on data reduction using the ICA algorithm to improve the efficiency of the classifier. The second step deals with the Fuzzy C-Means classification method to find specified clusters. Changed and unchanged areas are mapped in a binary image. Three different datasets are used to evaluate the result performance of the proposed system, and experiments results show that the used approach can detect changes in multi-temporal satellite images with good accuracy. To show the effectiveness, the comparisons with some other methods from state-of-the-art are shown on multitemporal images captured by Radarsat1 satellite SAR on the Ottawa area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kongapai, P., Sompongchaiyakul, P., Jitpraphai, S.: Assessing coastal land cover changes after the 2004 tsunami using remote sensing and GIS approaches. Walailak J. Sci. Tech. 13(9), 9 (2016)

    Google Scholar 

  2. Nackaerts, K., Vaesen, K., Muys, B., Coppin, P.: Comparative performance of a modified change vector analysis in forest change detection. Int. J. Remote Sens. 26(5), 5 (2005). https://doi.org/10.1080/0143116032000160462

  3. Lu, D., Mausel, P., Batistella, M., Moran, E.: Land‐cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study. Int. J. Remote Sens. 26(1), 1 (2005). https://doi.org/10.1080/01431160410001720748

  4. Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 4 (2012). https://doi.org/10.1109/TIP.2011.2170702

  5. Hou, B., Wei, Q., Zheng, Y., Wang, S.: Unsupervised change detection in SAR image based on gauss-log ratio image fusion and compressed projection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(8), 8 (2014). https://doi.org/10.1109/JSTARS.2014.2328344

  6. Wang, Y., Du, L., Dai, H.: Unsupervised SAR image change detection based on SIFT keypoints and region information. IEEE Geosci. Remote Sens. Lett. 13(7), 7 (2016). https://doi.org/10.1109/LGRS.2016.2554606

  7. Celik, T.: Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 6(4), 772–776 (2009). https://doi.org/10.1109/LGRS.2009.2025059

    Article  MathSciNet  Google Scholar 

  8. Maarir, A., Ider, A.A., Bouikhalene, B.: Hierarchical dimensionality reduction based fuzzy c-means methods for change detection in temporal satellite images. In: Ezziyyani, M. (ed.) AI2SD 2019. AISC, vol. 1105, pp. 273–286. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36674-2_29

    Chapter  Google Scholar 

  9. Jolliffe, I.T.: Principal Component Analysis. 2nd ed. Springer-Verlag, New York (2002). https://www.springer.com/gp/book/9780387954424. Accessed 11 June 2019

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification (2nd Edition). Wiley-Interscience, New York (2000)

    Google Scholar 

  11. Sarp, G., Ozcelik, M.: Water body extraction and change detection using time series: a case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 11(3), 3 (2017). https://doi.org/10.1016/j.jtusci.2016.04.005

  12. Zhu, B., Gao, H., Wang, X., Xu, M., Zhu, X.: Change detection based on the combination of improved SegNet neural network and morphology, pp. 55–59, June 2018. https://doi.org/10.1109/ICIVC.2018.8492747

  13. Izadi, M., Saeedi, P.: Automatic building detection in aerial images using a hierarchical feature based image segmentation. In: 2010 20th International Conference on Pattern Recognition, pp. 472–475, August 2010. https://doi.org/10.1109/ICPR.2010.123

  14. Maarir, A., Bouikhalene, B., Chajri, Y.: Building detection from satellite images based on curvature scale space method. Walailak J. Sci. Technol. (WJST) 14(6), 517–525 (2016). 10.14456/vol14iss6pp%p

    Google Scholar 

  15. Wang, Q., Zhang, X., Chen, G., Dai, F., Gong, Y., Zhu, K.: Change detection based on Faster R-CNN for high-resolution remote sensing images. Remote Sens. Lett. 9(10), 923–932 (2018). https://doi.org/10.1080/2150704X.2018.1492172

    Article  Google Scholar 

  16. Pirasteh, S., et al.: Developing an algorithm for buildings extraction and determining changes from airborne LiDAR, and comparing with R-CNN method from drone images. Remote. Sens. 11, 1272 (2019). https://doi.org/10.3390/RS11111272

    Article  Google Scholar 

  17. Pang, S., Hu, X., Zhang, M., Cai, Z., Liu, F.: Co-segmentation and superpixel-based graph cuts for building change detection from bi-temporal digital surface models and aerial images. Remote Sens. 11(6), 6(2019). https://doi.org/10.3390/rs11060729

  18. Huo, C., Chen, K., Ding, K., Zhou, Z., Pan, C.: Learning relationship for very high resolution image change detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 9(8), 3384–3394 (2016). https://doi.org/10.1109/JSTARS.2016.2569598

    Article  Google Scholar 

  19. Che, M., Gamba, P.: Intra-urban change analysis using sentinel-1 and nighttime light data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 12(4), 1134–1142 (2019). https://doi.org/10.1109/JSTARS.2019.2899881

    Article  Google Scholar 

  20. Ghosh, A., Mishra, N.S., Ghosh, S.: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf. Sci. 181(4), 4 (2011). https://doi.org/10.1016/j.ins.2010.10.016

  21. Tomowski, D., Ehlers, M., Klonus, S.: Colour and texture based change detection for urban disaster analysis. In: 2011 Joint Urban Remote Sensing Event, April 2011, pp. 329–332 (2011). https://doi.org/10.1109/JURSE.2011.5764786

  22. Gu, W., Lv, Z., Hao, M.: Change detection method for remote sensing images based on an improved Markov random field. Multimed. Tools App. 76(17), 17719–17734 (2015). https://doi.org/10.1007/s11042-015-2960-3

    Article  Google Scholar 

  23. Li, Z., Shi, W., Zhang, H., Hao, M.: Change detection based on Gabor wavelet features for very high resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 14(5), 5 (2017). https://doi.org/10.1109/LGRS.2017.2681198

  24. Wu, C., Du, B., Cui, X., Zhang, L.: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sens. Environ. 199(Suppl C), 241–255 (2017). https://doi.org/10.1016/j.rse.2017.07.009

  25. Sharma, A., Gulati, T.: Change detection from remotely sensed images based on stationary wavelet transform. Int. J. Elect. Comput. Eng. (IJECE) 7(6), 6 (2017)

    Google Scholar 

  26. Shao, P., Shi, W., He, P., Hao, M., Zhang, X.: Novel approach to unsupervised change detection based on a robust semi-supervised FCM clustering algorithm. Remote Sens. 8(3), 3 (2016). https://doi.org/10.3390/rs8030264

  27. Taati, A., Sarmadian, F., Mousavi, A., Pour, C.T.H., Shahir, A.H.E.: Land use classification using support vector machine and maximum likelihood algorithms by Landsat 5 TM images. Walailak J. Sci. Tech. 12(8), 8 (2015)

    Google Scholar 

  28. Goel, S., Verma, A., Goel, S., Juneja, K.: ICA in image processing: a survey. In: 2015 IEEE International Conference on Computational Intelligence Communication Technology, February 2015, pp. 144–149 (2015). https://doi.org/10.1109/CICT.2015.91

  29. Lim, J.S.: Two-dimensional signal and image processing (1990). Accessed 27 Sep 2017. http://adsabs.harvard.edu/abs/1990ph...book.....l

  30. Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications, vol. 8. MIT Press, Cambridge (1964)

    Google Scholar 

  31. Matteson, D.S., Tsay, R.S.: Independent component analysis via distance covariance. J. Am. Statist. Assoc. 112(518), 518 (2017). https://doi.org/10.1080/01621459.2016.1150851

  32. Shen, H., Jegelka, S., Gretton, A.: Fast kernel-based independent component analysis. IEEE Trans. Signal Process. 57(9), 9 (2009). https://doi.org/10.1109/TSP.2009.2022857

  33. Amin, M.R.M., Bejo, S.K., Ismail, W.I.W., Mashohor, S.: Colour extraction of agarwood images for fuzzy c-means classification. Walailak J. Sci. Technol. (WJST) 9(4), 445–459 (2012). https://doi.org/10.2004/wjst.v9i4.211

    Article  Google Scholar 

  34. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 3 (1973). https://doi.org/10.1080/01969727308546046

  35. Yang, M.-S.: A survey of fuzzy clustering. Math. Comput. Modell. 18(11), 11 (1993). https://doi.org/10.1016/0895-7177(93)90202-A

  36. Li, H.C., Celik, T., Longbotham, N., Emery, W.J.: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering. IEEE Geosci. Remote Sens. Lett. 12(12), 12 (2015). https://doi.org/10.1109/LGRS.2015.2484220

  37. Gong, M., Su, L., Jia, M., Chen, W.: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst. 22(1), 1 (2014). https://doi.org/10.1109/TFUZZ.2013.2249072

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Maarir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maarir, A., Azougaghe, Es., Bouikhalene, B. (2022). Automatic Change Detection Based on the Independent Component Analysis and Fuzzy C-Means Methods. In: Fakir, M., Baslam, M., El Ayachi, R. (eds) Business Intelligence. CBI 2022. Lecture Notes in Business Information Processing, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-031-06458-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06458-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06457-9

  • Online ISBN: 978-3-031-06458-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics