Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Inter-session Transfer Learning in MI Based BCI for Controlling a Lower-Limb Exoskeleton

  • Conference paper
  • First Online:
Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence (IWINAC 2022)

Abstract

Motor imagery (MI) brain-computer interfaces (BCI) have a critical function in the neurological rehabilitation of people with motor impairment. BCI are systems that employ brain activity to control any external device and MI is a commonly used control paradigm based on the imagination of a movement without executing it. The main limitation of these systems is the time necessary for their calibration, before using them for rehabilitation. A shorter calibration scheme was proposed for a lower-limb MI based BCI for controlling an exoskeleton. Each subject participated in 5 experimental sessions. Before each session with the exoskeleton, users were guided to perform MI with visual feedback in a virtual reality scenario. Training with virtual reality involves less physical effort and users can have a previous practise on the MI mental task. In addition, transfer learning was employed, so information from previous training sessions was used for the new one. Results showed that the performance of BCI was superior in comparison with baseline methodologies when transfer learning was used.

Supported by grant RTI2018-096677-B-I00, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”; and by the Consellería de Innovación, Universidades, Ciencia y Sociedad Digital (Generalitat Valenciana).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Costa, Á., et al.: Decoding the attentional demands of gait through EEG gamma band features. PloS One 11(4), e0154136–e0154136 (2016). https://doi.org/10.1371/journal.pone.0154136 ,https://pubmed.ncbi.nlm.nih.gov/27115740

  2. Feng, Z., Sun, Y., Qian, I., Qi, Y., Wang, Y., Guan, C., Sun, Y.: Design a novel BCI for neurorehabilitation using concurrent LFP and EEG features: a case study. IEEE Trans. Biomed. Eng. 1 (2021). https://doi.org/10.1109/TBME.2021.3115799

  3. Ferrero, L., Ortiz, M., Quiles, V., Iáñez, E., Azorín, J.M.: Improving motor imagery of gait on a brain-computer interface by means of virtual reality: a case of study. IEEE Access 9, 49121–49130 (2021). https://doi.org/10.1109/ACCESS.2021.3068929

    Article  Google Scholar 

  4. Ferrero, L., Quiles, V., Ortiz, M., Iáñez, E., Azorín, J.M.: BCI based on lower-limb motor imagery and a state machine for walking on a treadmill. In: International IEEE EMBS Conference on Neural Engineering (2020)

    Google Scholar 

  5. Ferrero, L., Quiles, V., Ortiz, M., Iáñez, E., Azorín, J.M.: A BMI based on motor imagery and attention for commanding a lower-limb robotic exoskeleton: a case study (2021). https://doi.org/10.3390/app11094106

  6. Gharabaghi, A.: What turns assistive into restorative brain-machine interfaces? Front. Neurosci. 10, 456 (2016). https://doi.org/10.3389/fnins.2016.00456. https://www.frontiersin.org/article/10.3389/fnins.2016.00456

  7. He, H., Wu, D.: Transfer learning for brain-computer interfaces: a euclidean space data alignment approach. IEEE Trans. Bio-Med. Eng. 67(2), 399–410 (2020). https://doi.org/10.1109/TBME.2019.2913914

  8. Jeannerod, M.: Mental imagery in the motor context. Neuropsychologia 33(11), 1419–1432 (1995). https://doi.org/10.1016/0028-3932(95)00073-C. http://www.sciencedirect.com/science/article/pii/002839329500073C

  9. Ortiz, M., Ferrero, L., Iáñez, E., Azorín, J.M., Contreras-Vidal, J.L.: Sensory integration in human movement: a new brain-machine interface based on gamma band and attention level for controlling a lower-limb exoskeleton. Front. Bioeng. Biotechnol. 8, 735 (2020). https://doi.org/10.3389/fbioe.2020.00735, https://doi.org/10.3389/fbioe.2020.00735

  10. Ren, S., Wang, W., Hou, Z.G., Liang, X., Wang, J., Shi, W.: Enhanced motor imagery based brain- computer interface via FES and VR for lower limbs. IEEE Trans. Neural Syst. Rehabilitat. Eng. 28(8), 1846–1855 (2020). https://doi.org/10.1109/TNSRE.2020.3001990

  11. Singh, A., Hussain, A.A., Lal, S., Guesgen, H.W.: A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors 21(6) (2021). https://doi.org/10.3390/s21062173. https://www.mdpi.com/1424-8220/21/6/2173

  12. Stockwell, R., Lowe, R., Mansinha, L.: Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. (1996)

    Google Scholar 

  13. Wang, F., Ping, J., Xu, Z., Bi, J.: Classification of motor imagery using multisource joint transfer learning. Rev. Sci. Instrum. 92(9), 94106 (2021). https://doi.org/10.1063/5.0054912

  14. Xu, Y., Huang, X., Lan, Q.: Selective cross-subject transfer learning based on Riemannian tangent space for motor imagery brain-computer interface. Front. Neurosci. 15, 779231 (2021). https://doi.org/10.3389/fnins.2021.779231

    Article  Google Scholar 

  15. Zanini, P., Congedo, M., Jutten, C., Said, S., Berthoumieu, Y.: Transfer learning: a Riemannian geometry framework with applications to brain-computer interfaces. IEEE Trans. Biomed. Eng. 65(5), 1107–1116 (2018). Article no. 779231. https://doi.org/10.1109/TBME.2017.2742541

  16. Zhang, X., She, Q., Chen, Y., Kong, W., Mei, C.: Sub-band target alignment common spatial pattern in brain-computer interface. Comput. Methods Programs Biomed. 207, 106150 (2021). https://doi.org/10.1016/j.cmpb.2021.106150

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrero, L., Quiles, V., Ortiz, M., Juan, J.V., Iáñez, E., Azorín, J.M. (2022). Inter-session Transfer Learning in MI Based BCI for Controlling a Lower-Limb Exoskeleton. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer Science, vol 13259. Springer, Cham. https://doi.org/10.1007/978-3-031-06527-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06527-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06526-2

  • Online ISBN: 978-3-031-06527-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics