Abstract
Recent progress in generative image modeling is leading to a new era of high-resolution fakes visually indistinguishable from real life images. However, the development of metrics capable of discerning whether images are synthetic or not runs behind the race of achieving the best generator, thus bringing potential threats. We propose a rotation invariant metric capable of distinguishing real and generated image datasets and we call it CSD (Circular Spectrum Distance) due to its circular nature and its inherent relation to the Fourier Spectrum. Its performance is analysed on a whole brain MRI dataset. CSD has similar behavior to FID during training but requires smaller batch sizes and is faster to compute.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alt, H., Godau, M.: Computing the Frêchet distance between two poligonal curves. Int. J. Comput. Geom. Appli. (1995). https://doi.org/10.1142/s0218195995000064
Borji, A.: Pros and cons of GAN evaluation measures. Comput. Vis. Image Underst. (2019). https://doi.org/10.1016/j.cviu.2018.10.009
Cohen, T.S., Welling, M.: Group equivariant convolutional networks. In: 33rd International Conference on Machine Learning, ICML 2016, vol. 6, pp. 4375–4386, February 2016
Duque, P., Cuadra, J.M., Jiménez, E., Rincón-Zamorano, M.: Data preprocessing for automatic WMH segmentation with FCNNs. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F.,Toledo Moreo, J., Adeli, H. (eds.) From Bioinspired Systems and Biomedical Applications to Machine Learning, IWINAC 2019. LNCS, vol 11487, pp. 452–460. Springer, Cham, (2019). https://doi.org/10.1007/978-3-030-19651_644
Dzanic, T., Shah, K., Witherden, F.: Fourier spectrum discrepancies in deep network generated images, November 2019
Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Tech. rep. (1994)
Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014). https://doi.org/10.3156/jsoft.29.5_177_2
Guberman, N.: On complex valued convolutional neural networks, February 2016. http://arxiv.org/abs/1602.09046
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems (2017)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems (2017)
Goodfellow, I., Yoshua Bengio, A.C.: Front Matter. In: Linear Algebra, pp. i–ii. Elsevier (2014). https://doi.org/10.1016/B978-0-12-391420-0.09987-X
Im, D.J., Kim, C.D., Jiang, H., Memisevic, R.: Generating images with recurrent adversarial networks, February 2016
Isensee, F., et al.: Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. (2019). https://doi.org/10.1002/hbm.24750
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 4396–4405. IEEE, June 2019, https://doi.org/10.1109/CVPR.2019.00453
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 8107–8116. IEEE, June 2020. https://doi.org/10.1109/CVPR42600.2020.00813
Olsson, C., Bhupatiraju, S., Brown, T., Odena, A., Goodfellow, I.: Skill rating for generative models, August 2018. http://arxiv.org/abs/1808.04888
Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning for medical imaging. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc. (2019). https://papers.nips.cc/paper/2019/hash/eb1e78328c46506b46a4ac4a1e378b91-Abstract.html
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems (2016)
Shmelkov, K., Schmid, C., Alahari, K.: How good is my GAN? pp. 218–234, July 2018. https://doi.org/10.1007/978-3-030-01216-8_14
Tygert, M., Bruna, J., Chintala, S., LeCun, Y., Piantino, S., Szlam, A.: A mathematical motivation for complex-valued convolutional networks. Neural Comput. 28(5), 815–825 (2016). https://doi.org/10.1162/NECO_a_00824, https://direct.mit.edu/neco/article/28/5/815-825/8157
Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNS for digital pathology. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24
Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-Generated images are surprisingly easy to spot... for now. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 8692–8701. IEEE, June 2020. https://doi.org/10.1109/CVPR42600.2020.00872
Worrall, D.E., Garbin, S.J., Turmukhambetov, D., Brostow, G.J.: Harmonic networks: deep translation and rotation equivariance. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 7168–7177. IEEE, July 2017. https://doi.org/10.1109/CVPR.2017.758
Yazıcı, Y., Foo, C.S., Winkler, S., Yap, K.H., Piliouras, G., Chandrasekhar, V.: The unusual effectiveness of averaging in GAN training. In: 7th International Conference on Learning Representations, ICLR 2019, June 2018
Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in GAN fake images. In: 2019 IEEE International Workshop on Information Forensics and Security, WIFS, pp. 1–6. IEEE, December 2019. https://doi.org/10.1109/WIFS47025.2019.9035107
Acknowledgments
The authors gratefully acknowledge research project PID2019-110686RB-I00 of the State Research Program Oriented to the Challenges of Society.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Gamazo, J., Cuadra, J.M., Rincón, M. (2022). An Efficient and Rotation Invariant Fourier-Based Metric for Assessing the Quality of Images Created by Generative Models. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer Science, vol 13259. Springer, Cham. https://doi.org/10.1007/978-3-031-06527-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-06527-9_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06526-2
Online ISBN: 978-3-031-06527-9
eBook Packages: Computer ScienceComputer Science (R0)