Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Incompressible Cryptography

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Abstract

Incompressible encryption allows us to make the ciphertext size flexibly large and ensures that an adversary learns nothing about the encrypted data, even if the decryption key later leaks, unless she stores essentially the entire ciphertext. Incompressible signatures can be made arbitrarily large and ensure that an adversary cannot produce a signature on any message, even one she has seen signed before, unless she stores one of the signatures essentially in its entirety.

In this work, we give simple constructions of both incompressible public-key encryption and signatures under minimal assumptions. Furthermore, large incompressible ciphertexts (resp. signatures) can be decrypted (resp. verified) in a streaming manner with low storage. In particular, these notions strengthen the related concepts of disappearing encryption and signatures, recently introduced by Guan and Zhandry (TCC 2021), whose previous constructions relied on sophisticated techniques and strong, non-standard assumptions. We extend our constructions to achieve an optimal “rate”, meaning the large ciphertexts (resp. signatures) can contain almost equally large messages, at the cost of stronger assumptions.

J. Guan—Part of this research was conducted while this author was a research intern at NTT Research, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The symmetric-key scheme of [Dzi06b] also only offers one-time security. However, a simple hybrid argument shows that this implies many-time security, where the adversary can compress each of many ciphertexts separately and later sees the secret key. However, it inherently does not offer any security if the adversary can jointly compress many ciphertexts, even if the compressed value is much smaller than a single ciphertext! In contrast, public-key incompressible encryption automatically ensures security in such setting via a simple hybrid argument.

  2. 2.

    It’s not hard to see that one-way functions, and therefore symmetric key cryptography, are implied by disappearing ciphertexts, since the secret key can be information-theoretically recovered from the public key.

  3. 3.

    This is equivalent to the \(\alpha \)-expansion property as defined in [MW20] for \(\alpha =L_c/L_m\).

  4. 4.

    This is equivalent to \(\beta \)-incompressibility as defined in [MW20] for \(\beta =S\).

References

  1. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-Key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_6

    Chapter  MATH  Google Scholar 

  2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_3

    Chapter  MATH  Google Scholar 

  3. Aumann, Y., Rabin, M.O.: Information theoretically secure communication in the limited storage space model. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 65–79. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_5

    Chapter  Google Scholar 

  4. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_7

    Chapter  Google Scholar 

  5. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_3

    Chapter  Google Scholar 

  6. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_4

    Chapter  Google Scholar 

  7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  8. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

    Chapter  Google Scholar 

  9. Biryukov, A., Khovratovich, D.: Egalitarian computing. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 315–326. USENIX Association (2016)

    Google Scholar 

  10. Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: resisting key exfiltration. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 373–402. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_14

    Chapter  Google Scholar 

  11. Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper bounds for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_7

    Chapter  Google Scholar 

  12. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15

    Chapter  Google Scholar 

  13. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_27

    Chapter  Google Scholar 

  14. Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-bounded receiver. In: 39th FOCS, pp. 493–502. IEEE Computer Society Press (1998)

    Google Scholar 

  15. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R., Walfish, S.: Intrusion-resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_26

    Chapter  Google Scholar 

  16. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052229

    Chapter  Google Scholar 

  17. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adversaries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052243

    Chapter  Google Scholar 

  18. Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious transfer in the bounded storage model. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 446–472. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_25

    Chapter  Google Scholar 

  19. Ding, Y.Z.: Oblivious transfer in the bounded storage model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 155–170. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_9

    Chapter  Google Scholar 

  20. Di Crescenzo, G., Lipton, R., Walfish, S.: Perfectly secure password protocols in the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 225–244. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_12

    Chapter  Google Scholar 

  21. Dodis, Y., Quach, W., Wichs, D.: Speak much, remember little: cryptography in the bounded storage model, revisited. Cryptology ePrint Archive, Report 2021/1270 (2021). https://ia.cr/2021/1270

  22. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  23. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_11

    Chapter  Google Scholar 

  24. Dziembowski, S.: On forward-secure storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_15

    Chapter  Google Scholar 

  25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (2013)

    Google Scholar 

  26. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  27. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pp. 736–749 (2021)

    Google Scholar 

  28. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_11

    Chapter  Google Scholar 

  29. Guan, J., Zhandary, M.: Simple schemes in the bounded storage model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 500–524. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_17

    Chapter  MATH  Google Scholar 

  30. Guan, J., Zhandry, M.: Disappearing cryptography in the bounded storage model. In: Theoretical Cryptography Conference (2021). https://ia.cr/2021/406

  31. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_2

    Chapter  Google Scholar 

  32. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pp. 60–73 (2021)

    Google Scholar 

  33. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press (2013)

    Google Scholar 

  34. Lu, C.-J.: Hyper-encryption against space-bounded adversaries from on-line strong extractors. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 257–271. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_17

    Chapter  Google Scholar 

  35. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized cipher. J. Cryptol. 5(1), 53–66 (1992). https://doi.org/10.1007/BF00191321

    Article  MathSciNet  MATH  Google Scholar 

  36. Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the bounded storage model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 460–476. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_28

    Chapter  MATH  Google Scholar 

  37. Moran, T., Wichs, D.: Incompressible encodings. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 494–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_17

    Chapter  Google Scholar 

  38. Nisan, N.: Psuedorandom generators for space-bounded computation. In: 22nd ACM STOC, pp. 204–212. ACM Press (1990)

    Google Scholar 

  39. Raz, R.: A time-space lower bound for a large class of learning problems. In: Umans, C. (ed.) 58th FOCS, pp. 732–742. IEEE Computer Society Press (2017)

    Google Scholar 

  40. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052348

    Chapter  MATH  Google Scholar 

  41. Vadhan, S.P.: On constructing locally computable extractors and cryptosystems in the bounded storage model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 61–77. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_4

    Chapter  Google Scholar 

  42. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 111–126. ACM (2013)

    Google Scholar 

  43. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. Cryptology ePrint Archive, Report 2020/1042 (2020). https://eprint.iacr.org/2020/1042

  44. Zaverucha, G.: Stronger password-based encryption using all-or-nothing transforms (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxin Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, J., Wichs, D., Zhandry, M. (2022). Incompressible Cryptography. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06944-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06943-7

  • Online ISBN: 978-3-031-06944-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics