Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mammogram Mass Classification: A CNN-Based Technique Applied to Different Age Groups

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2021)

Abstract

The World Health Organization (WHO) reports that breast cancer is one of the most frequent cancers among women, affecting almost 2.1 million women/year. As a consequence, fatality rate is high: 627,000 women died from breast cancer in 2018, which is approximately 15% [1] of all cancer deaths among women. Early detection (using AI-driven tools) can prevent from being worse. In this paper, we propose a Convolutional Neural Network (CNN) based approach for mammogram mass classification. The proposed method outperforms our existing feature-learning based model [2] on the same dataset. We experimentally achieved the best average recognition accuracy of 95.25% in separating malignant from benign masses. In our study on different age groups for mammogram mass classification, better results were observed from the age group: 61–75 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/. Accessed 15 Nov 2019

  2. Obaidullah, S.M., Ahmed, S., Gonçalves, T., Rato, L.: RMID: a novel and efficient image descriptor for mammogram mass classification. In: Kulczycki, P., Kacprzyk, J., Kóczy, L.T., Mesiar, R., Wisniewski, R. (eds.) ITSRCP 2018. AISC, vol. 945, pp. 229–240. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18058-4_18

    Chapter  Google Scholar 

  3. Skaane, P., Hofvind, S., Skjennald, A.: Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo II study. Radiology 244(3), 708–17 (2007)

    Article  Google Scholar 

  4. Pisano, E.D., Gatsonis, C., Hendrick, E., et al.: Diagnostic performance of digital versus film mammography for breast-cancer screening. N. Engl. J. Med. 353(17), 1773–83 (2005). For the Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group

    Article  Google Scholar 

  5. Pisano, E.D., Hendrick, R.E., Yaffe, M.J., et al.: Diagnostic accuracy of digital versus film mammography: exploratory analysis of selected population subgroups in DMIST. Radiology 246(2), 376–83 (2008). For the Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group

    Article  Google Scholar 

  6. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Convolutional neural networks for mammography mass lesion classification. In: IEEE 37th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) (2015)

    Google Scholar 

  7. http://bcdr.inegi.up.pt. Accessed 25 Jan 2018

  8. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Program. Biomed. 127, 248–257 (2016)

    Article  Google Scholar 

  9. Moura, D.C., López, M.A.G.: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int. J. Comput. Assist. Radiol. Surg. 8, 561–574 (2013)

    Article  Google Scholar 

  10. Haralick, R.M., Shanmuga, K., Dinstein, I.: Textural features for image classification. IEEE Tran. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  11. Yu, S.Y., Guan, L.: A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Trans. Med. Imaging 19(2), 115–126 (2000)

    Article  Google Scholar 

  12. Dhawan, A.P., Chitre, Y., Kaiser, B.C., Moskowitz, M.: Analysis of mammographic microcalcifications using gray-level image structure features. IEEE Trans. Med. Imaging 15(3), 246–259 (1996)

    Article  Google Scholar 

  13. Wang, D., Shi, L., Ann, H.P.: Automatic detection of breast cancers in mammograms using structured support vector machines. Neurocomputing 72(13–15), 3296–3302 (2009)

    Article  Google Scholar 

  14. Dua, S., Singh, H., Thompson, H.W.: Associative classification of mammograms using weighted rules. Expert Syst. Appl. 36(5), 9250–9259 (2009)

    Article  Google Scholar 

  15. Sahiner, B., Chan, H.P., Petrick, N., Helvie, M.A., Hadjiiski, L.M.: Improvement of mammographic mass characterization using spiculation measures and morphological features. Med. Phys. 28(7), 1455–1465 (2001)

    Article  Google Scholar 

  16. Mazo, C., Alegre, E., Trujillo, M., González-Castro, V.: Tissues classification of the cardiovascular system using texture descriptors. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 123–132. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_11

    Chapter  Google Scholar 

  17. O’Neil, A., Shepherd, M., Beveridge, E., Goatman, K.: A comparison of texture features versus deep learning for image classification in interstitial lung disease. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 743–753. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_65

    Chapter  Google Scholar 

  18. Ferreira, C.B.R., Borges, D.B.L.: Analysis of mammogram classification using a wavelet transform decomposition. Pattern Recogn. Lett. 24(7), 973–982 (2003)

    Article  Google Scholar 

  19. Rashed, E.A., Ismail, I.A., Zaki, S.I.: Multiresolution mammogram analysis in multilevel decomposition. Pattern Recogn. Lett. 28(2), 286–292 (2007)

    Article  Google Scholar 

  20. Meselhy, E.M., Faye, I., Belhaouari, S.B.: A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput BiolMed. 40(4), 384–391 (2010). https://doi.org/10.1016/j.compbiomed.2010.02.002

    Article  Google Scholar 

  21. Ramos-Pollán, R., et al.: Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J. Med. Syst. 36(4), 2259–69 (2011)

    Article  Google Scholar 

  22. Bielza, C., Li, G., Larrañaga, P.: Multi-dimensional classification with Bayesian networks. Int. J. Approx. Reason. 52, 705–727 (2011)

    Article  MathSciNet  Google Scholar 

  23. Mika, S., Ratsch, G., Weston, J.: Fisher discriminant analysis with kernels. In: IEEE Conference on Neural Networks for Signal Processing IX, pp. 41–48 (1999)

    Google Scholar 

  24. http://mlcheatsheet.readthedocs.io/en/latest/logistic_regression.html. Accessed 15 Nov 2019

  25. Santosh, K.C., Antani, S.: Automated chest X-ray screening: can lung region symmetry help detect pulmonary abnormalities. IEEE Trans. Med. Imaging (2017). https://doi.org/10.1109/TMI.2017.2775636

    Article  Google Scholar 

  26. Mukherjee, H., et al.: Deep learning for spoken language identification: can we visualize speech signal patterns? Neural Comput. Appl. 31, 8483–8501 (2019)

    Article  Google Scholar 

  27. Santosh, K.C., Wendling, L., Antani, S.K., Thoma, G.R.: Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell. Syst. 31(3), 66–75 (2016)

    Article  Google Scholar 

  28. Ghosh, S., Bandyopadhyay, A., Sahay, S., Ghosh, R., Kundu, I., Santosh, K.C.: Colorectal histology tumor detection using ensemble deep neural network. Eng. Appl. Artif. Intell. 100, 104202 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Obaidullah, S.M., Mukherjee, H., Dhar, A., Goncalves, T., Santosh, K., Roy, K. (2022). Mammogram Mass Classification: A CNN-Based Technique Applied to Different Age Groups. In: Santosh, K., Hegadi, R., Pal, U. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2021. Communications in Computer and Information Science, vol 1576. Springer, Cham. https://doi.org/10.1007/978-3-031-07005-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07005-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07004-4

  • Online ISBN: 978-3-031-07005-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics