Abstract
Systems are commonly monitored for health and security through collection and streaming of multivariate time series. Advances in time series forecasting due to adoption of multilayer recurrent neural network architectures make it possible to forecast in high-dimensional time series, and identify and classify novelties early, based on subtle changes in the trends. However, mainstream approaches to multi-variate time series predictions do not handle well cases when the ongoing forecasts must include uncertainty, nor they are robust to missing data. We introduce a new architecture for time series monitoring based on combination of state-of-the-art methods of forecasting in high-dimensional time series with full probabilistic handling of uncertainty. We demonstrate advantage of the architecture for time series forecasting and novelty detection, in particular with partially missing data, and empirically evaluate and compare the architecture to state-of-the-art approaches on a real-world data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)
Afgani, M., Sinanovic, S., Haas, H.: Anomaly detection using the Kullback-Leibler divergence metric. In: 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, pp. 1–5 (2008)
Alaa, A., Van Der Schaar, M.: Frequentist uncertainty in recurrent neural networks via blockwise influence functions. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, 13–18 July 2020, vol. 119, pp. 175–190. PMLR (2020)
Bansal, P., Deshpande, P., Sarawagi, S.: Missing value imputation on multidimensional time series. Proc. VLDB Endow. 14(11), 2533–2545 (2021)
Berglund, M., Raiko, T., Honkala, M., Kärkkäinen, L., Vetek, A., Karhunen, J.T.: Bidirectional recurrent neural networks as generative models. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)
Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)
Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Wu, D., Carpuat, M., Carreras, X., Vecchi, E. (eds.) Proceedings of SSST 2014–8th Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111. Proceedings of SSST 2014–8th Workshop on Syntax, Semantics and Structure in Statistical Translation, Association for Computational Linguistics (ACL) (2014). Funding Information: The authors would like to acknowledge the support of the following agencies for research funding and computing support: NSERC, Calcul Québec, Compute Canada, the Canada Research Chairs and CIFAR. Publisher Copyright: 2014 Association for Computational Linguistics; 8th Workshop on Syntax, Semantics and Structure in Statistical Translation, SSST 2014; Conference date: 25-10-2014
Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-series data: review, analysis, and guidelines. IEEE Access 9, 120043–120065 (2021). https://doi.org/10.1109/ACCESS.2021.3107975
Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., Bengio, Y.: A recurrent latent variable model for sequential data. In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2015, pp. 2980–2988. MIT Press, Cambridge (2015)
Fraccaro, M., Sønderby, S.R.K., Paquet, U., Winther, O.: Sequential neural models with stochastic layers. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Kim, Y.J., Chi, M.: Temporal belief memory: Imputing missing data during RNN training. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 2326–2332. International Joint Conferences on Artificial Intelligence Organization (2018)
Li, L., Yan, J., Yang, X., Jin, Y.: Learning interpretable deep state space model for probabilistic time series forecasting. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 2901–2908. AAAI Press (2019)
Lipton, Z.C., Kale, D., Wetzel, R.: Directly modeling missing data in sequences with RNNs: improved classification of clinical time series. In: Doshi-Velez, F., Fackler, J., Kale, D., Wallace, B., Wiens, J. (eds.) Proceedings of the 1st Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research, 18–19 August 2016, vol. 56, pp. 253–270. PMLR, Northeastern University, Boston (2016)
Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2828–2837. Association for Computing Machinery, New York (2019)
Suo, Q., Yao, L., Xun, G., Sun, J., Zhang, A.: Recurrent imputation for multivariate time series with missing values. In: 2019 IEEE International Conference on Healthcare Informatics (ICHI), pp. 1–3 (2019). https://doi.org/10.1109/ICHI.2019.8904638
Tolpin, D.: Population anomaly detection through deep gaussianization. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019, pp. 1330–1336. Association for Computing Machinery, New York (2019)
Wen, Q., et al.: Time series data augmentation for deep learning: a survey. In: Zhou, Z.H. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4653–4660. International Joint Conferences on Artificial Intelligence Organization (2021). Survey Track
Yin, Z., Barucca, P.: Stochastic recurrent neural network for multistep time series forecasting. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13108, pp. 14–26. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92185-9_2
Acknowledgements
We thank PUB+ for providing computational facilities for conducting the empirical evaluation. David Tolpin is partially supported by Israel-U.S. Industrial Research and Development Foundation’s Cybersecurity technology for critical power infrastructure AI-based centralized defense and edge resilience project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Barazani, O., Tolpin, D. (2022). Monitoring Time Series with Missing Values: A Deep Probabilistic Approach. In: Dolev, S., Katz, J., Meisels, A. (eds) Cyber Security, Cryptology, and Machine Learning. CSCML 2022. Lecture Notes in Computer Science, vol 13301. Springer, Cham. https://doi.org/10.1007/978-3-031-07689-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-07689-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07688-6
Online ISBN: 978-3-031-07689-3
eBook Packages: Computer ScienceComputer Science (R0)