Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monitoring Time Series with Missing Values: A Deep Probabilistic Approach

  • Conference paper
  • First Online:
Cyber Security, Cryptology, and Machine Learning (CSCML 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13301))

  • 1090 Accesses

Abstract

Systems are commonly monitored for health and security through collection and streaming of multivariate time series. Advances in time series forecasting due to adoption of multilayer recurrent neural network architectures make it possible to forecast in high-dimensional time series, and identify and classify novelties early, based on subtle changes in the trends. However, mainstream approaches to multi-variate time series predictions do not handle well cases when the ongoing forecasts must include uncertainty, nor they are robust to missing data. We introduce a new architecture for time series monitoring based on combination of state-of-the-art methods of forecasting in high-dimensional time series with full probabilistic handling of uncertainty. We demonstrate advantage of the architecture for time series forecasting and novelty detection, in particular with partially missing data, and empirically evaluate and compare the architecture to state-of-the-art approaches on a real-world data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

    Article  Google Scholar 

  2. Afgani, M., Sinanovic, S., Haas, H.: Anomaly detection using the Kullback-Leibler divergence metric. In: 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, pp. 1–5 (2008)

    Google Scholar 

  3. Alaa, A., Van Der Schaar, M.: Frequentist uncertainty in recurrent neural networks via blockwise influence functions. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, 13–18 July 2020, vol. 119, pp. 175–190. PMLR (2020)

    Google Scholar 

  4. Bansal, P., Deshpande, P., Sarawagi, S.: Missing value imputation on multidimensional time series. Proc. VLDB Endow. 14(11), 2533–2545 (2021)

    Article  Google Scholar 

  5. Berglund, M., Raiko, T., Honkala, M., Kärkkäinen, L., Vetek, A., Karhunen, J.T.: Bidirectional recurrent neural networks as generative models. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)

    Google Scholar 

  6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    Article  Google Scholar 

  7. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)

    Article  Google Scholar 

  8. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Wu, D., Carpuat, M., Carreras, X., Vecchi, E. (eds.) Proceedings of SSST 2014–8th Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111. Proceedings of SSST 2014–8th Workshop on Syntax, Semantics and Structure in Statistical Translation, Association for Computational Linguistics (ACL) (2014). Funding Information: The authors would like to acknowledge the support of the following agencies for research funding and computing support: NSERC, Calcul Québec, Compute Canada, the Canada Research Chairs and CIFAR. Publisher Copyright: 2014 Association for Computational Linguistics; 8th Workshop on Syntax, Semantics and Structure in Statistical Translation, SSST 2014; Conference date: 25-10-2014

    Google Scholar 

  9. Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-series data: review, analysis, and guidelines. IEEE Access 9, 120043–120065 (2021). https://doi.org/10.1109/ACCESS.2021.3107975

    Article  Google Scholar 

  10. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., Bengio, Y.: A recurrent latent variable model for sequential data. In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2015, pp. 2980–2988. MIT Press, Cambridge (2015)

    Google Scholar 

  11. Fraccaro, M., Sønderby, S.R.K., Paquet, U., Winther, O.: Sequential neural models with stochastic layers. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Kim, Y.J., Chi, M.: Temporal belief memory: Imputing missing data during RNN training. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 2326–2332. International Joint Conferences on Artificial Intelligence Organization (2018)

    Google Scholar 

  14. Li, L., Yan, J., Yang, X., Jin, Y.: Learning interpretable deep state space model for probabilistic time series forecasting. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 2901–2908. AAAI Press (2019)

    Google Scholar 

  15. Lipton, Z.C., Kale, D., Wetzel, R.: Directly modeling missing data in sequences with RNNs: improved classification of clinical time series. In: Doshi-Velez, F., Fackler, J., Kale, D., Wallace, B., Wiens, J. (eds.) Proceedings of the 1st Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research, 18–19 August 2016, vol. 56, pp. 253–270. PMLR, Northeastern University, Boston (2016)

    Google Scholar 

  16. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2828–2837. Association for Computing Machinery, New York (2019)

    Google Scholar 

  17. Suo, Q., Yao, L., Xun, G., Sun, J., Zhang, A.: Recurrent imputation for multivariate time series with missing values. In: 2019 IEEE International Conference on Healthcare Informatics (ICHI), pp. 1–3 (2019). https://doi.org/10.1109/ICHI.2019.8904638

  18. Tolpin, D.: Population anomaly detection through deep gaussianization. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019, pp. 1330–1336. Association for Computing Machinery, New York (2019)

    Google Scholar 

  19. Wen, Q., et al.: Time series data augmentation for deep learning: a survey. In: Zhou, Z.H. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4653–4660. International Joint Conferences on Artificial Intelligence Organization (2021). Survey Track

    Google Scholar 

  20. Yin, Z., Barucca, P.: Stochastic recurrent neural network for multistep time series forecasting. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13108, pp. 14–26. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92185-9_2

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank PUB+ for providing computational facilities for conducting the empirical evaluation. David Tolpin is partially supported by Israel-U.S. Industrial Research and Development Foundation’s Cybersecurity technology for critical power infrastructure AI-based centralized defense and edge resilience project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tolpin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barazani, O., Tolpin, D. (2022). Monitoring Time Series with Missing Values: A Deep Probabilistic Approach. In: Dolev, S., Katz, J., Meisels, A. (eds) Cyber Security, Cryptology, and Machine Learning. CSCML 2022. Lecture Notes in Computer Science, vol 13301. Springer, Cham. https://doi.org/10.1007/978-3-031-07689-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07689-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07688-6

  • Online ISBN: 978-3-031-07689-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics