Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Energy Harvesting Techniques for Sensory Glove Systems

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2021)

Abstract

We proposed and addressed methods for using multiple energy harvesting strategies to power a wearable sensory glove. The capabilities of piezoelectric and thermal energy harvesters were reported, with hand motions and body heat used to these goals. A potential multi-input single-output DC-DC architecture was proposed to harvest energy from the two sources, and power analysis results were used to assess the harvesting system viability in terms of the amount of gathered power required to power the target applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plawiak, P., Sosnicki, T., Niedzwiecki, M., Tabor, Z., Rzecki, K.: Hand body language gesture recognition based on signals from specialized glove and machine learning algorithms. IEEE Trans. Industr. Inf. 12, 1104–1113 (2016)

    Article  Google Scholar 

  2. Sbernini, L., Quitadamo, L., Riillo, F., Lorenzo, N., Gaspari, A., Saggio, G.: Sensory-glove-based open surgery skill evaluation. IEEE Trans. Human-Mach. Syst. 48, 213–218 (2018)

    Article  Google Scholar 

  3. Saggio, G., Cavrini, F., Pinto, C.A.: Recognition of arm-and-hand visual signals by means of svm to increase aircraft security. In: Merelo, J.J., Rosa, A., Cadenas, J.M., Correia, A.D., Madani, K., Ruano, A., Filipe, J. (eds.) IJCCI 2015. SCI, vol. 669, pp. 444–461. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48506-5_23

    Chapter  Google Scholar 

  4. Chang, H., Chang, J.: Sensor glove based on novel inertial sensor fusion control algorithm for 3-d real-time hand gestures measurements. IEEE Trans. Industr. Electron. 67, 658–666 (2020)

    Article  Google Scholar 

  5. Connolly, J., Condell, J., O’Flynn, B., Sanchez, J., Gardiner, P.: IMU sensor-based electronic goniometric glove (iSEG-Glove) for clinical finger movement analysis. IEEE Sens. J. 18, 1273–1281 (2017)

    Google Scholar 

  6. Pantoli, L., Paolucci, R., Muttillo, M., Fusacchia, P., Leoni, A.: A multisensorial thermal anemometer system. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano, P. (eds.) CNS 2016. LNEE, vol. 431, pp. 330–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55077-0_42

    Chapter  Google Scholar 

  7. Fusacchia, P., et al.: A low cost fully integrable in a standard CMOS technology portable system for the assessment of wind conditions. Proc. Eng. 168, 1024–1027 (2016)

    Article  Google Scholar 

  8. Stornelli, V., Ferri, G., Leoni, A., Pantoli, L.: The assessment of wind conditions by means of hot wire sensors and a modifed Wheatstone bridge architecture. Sens. Actuat. A 262, 130–139 (2017)

    Article  Google Scholar 

  9. Mantenuto, P., Ferri, G., De Marcellis, A.: Uncalibrated automatic bridge-based CMOS integrated interfaces for wide-range resistive sensors portable applications. Microelectron. J. 45, 589–596 (2014)

    Article  Google Scholar 

  10. Pantoli, L., Muttillo, M., Stornelli, V., Ferri, G., Gabriele, T.: A low cost flexible power line communication system. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano, P. (eds.) CNS 2016. LNEE, vol. 431, pp. 413–420. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55077-0_52

    Chapter  Google Scholar 

  11. Orengo, G., Lagati, A., Saggio, G.: Modeling wearable bend sensor behavior for human motion capture. IEEE Sens. J. 4(7), 2307–2316e1 (2014)

    Article  Google Scholar 

  12. Saggio, G., Orengo, G.: Flex sensor characterization against shape and curvature changes. Sens. Actuat. A 273, 221–231 (2018)

    Article  Google Scholar 

  13. Di Marco, P., Leoni, A., Pantoli, L., Stornelli, V., Ferri, G.: Remote sensor networks with efficient energy harvesting architecture. In: 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2016)

    Google Scholar 

  14. Pantoli, L., Leoni, A., Stornelli, V., Ferri, G.: An IC architecture for RF energy harvesting systems. J. Commun. Softw. Syst. 13, 96 (2017)

    Article  Google Scholar 

  15. Piscitelli, G., et al.: A low-cost energy-harvesting sensory headwear useful for tetraplegic people to drive home automation. AEU-Int. J. Electron. C. 107, 9–14 (2019)

    Article  Google Scholar 

  16. Leoni, A., Pantoli, L., Stornelli, V., Ferri, G., Russo, M., Solic, P.: 90/900 MHz IC architecture for autonomous systems. In: 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, pp. 1–4 (2017)

    Google Scholar 

  17. Stornelli, V., Muttillo, M., de Rubeis, T., Nardi, I.: A new simplified five-parameter estimation method for single-diode model of photovoltaic panels. Energies 12, 4271 (2019)

    Article  Google Scholar 

  18. Khalifa, S., Hassan, M., Seneviratne, A., Das, S.: Energy-harvesting wearables for activity-aware services. IEEE Internet Comput. 19, 8–16 (2015)

    Article  Google Scholar 

  19. Leonov, V.: Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens. J. 13, 2284–2291 (2013)

    Article  Google Scholar 

  20. Ulisse, I., Ricci, S., Ferri, G.: Towards wearable electronic devices: piezoelectric glove design and test. In: 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech) (2020)

    Google Scholar 

  21. Ulisse, I., Colaiuda, D., Ricci, S., Ferri, G.: Piezoelectric glove design and test for future wearable devices. J. Phys: Conf. Ser. 1603, 012013 (2020)

    Google Scholar 

  22. Leoni, A., Pantoli, L.: SPICE model identification technique of a cheap thermoelectric cell applied to DC/DC design with MPPT algorithm for low-cost, low-power energy harvesting. Appl. Sci. 9, 3744 (2019)

    Article  Google Scholar 

  23. Irmak, E., Guler, N.: Application of a boost based multi-input single-output DC/DC converter. In: 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA) (2017)

    Google Scholar 

  24. Poshtkouhi, S., Trescases, O.: Multi-input single-inductor dc-dc converter for MPPT in parallel-connected photovoltaic applications. In: 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Colaiuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leoni, A., Pantoli, L., Colaiuda, D., Ulisse, I., Errico, V., Saggio, G. (2023). Energy Harvesting Techniques for Sensory Glove Systems. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08136-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08135-4

  • Online ISBN: 978-3-031-08136-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics