Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Hybrid Deep Learning Approach for Prediction and Binary Classification of Student’s Stress

  • Conference paper
  • First Online:
Intelligent Systems and Pattern Recognition (ISPR 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1589))

  • 661 Accesses

Abstract

Nowadays, Stress has repercussions on the mental, physical and psychological health for many persons in life especially students in universities. Stressful life has many negative consequences such as anxiety disorders and depression. The negative influences of stress can be seen in several areas such as mental health.

The prediction of stress can compensate for the negative effects and does not lead to an advanced state. This prediction can be made through smartphones.

In this paper, we aim to classify psychological students state on two classes “stressed” and “not stressed” using smartphones by analyzing extracted features from heterogenous smartphone sensors input information. Indeed, we suggest hybrid deep learning method using both attentional model and Long Short-Term Memory (LSTM) recurrent network. The obtained result achieves 93% accuracy on the test set and comparing to other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shoumy, N.J., Ang, L.M., Seng, K.P., Rahaman, D.M., Zia, T.: Multimodal big data affective analytics: a comprehensive survey using text, audio, visual and physiological signals. J. Netw. Comput. Appl. 149, 1–26 (2020). https://doi.org/10.1016/j.jnca.2019.102447

    Article  Google Scholar 

  2. Politou, E., Alepis, E., Patsakis, C.: A survey on mobile affective computing. Comput. Sci. Rev. 25, 79–100 (2017). https://doi.org/10.1016/j.cosrev.2017.07.002

    Article  Google Scholar 

  3. Hemmerle, A.M., Herman, J.P., Seroogy, K.B.: Stress, depression and Parkinson’s disease. Exp. Neurol. 233(1), 79–86 (2012). https://doi.org/10.1016/j.expneurol.2011.09.035

    Article  Google Scholar 

  4. Pushkarev, G.S., Kuznetsov, V.A., Fisher, Y.A., Soldatova, A.M., Enina, T.N.: Depression and all-cause mortality in patients with congestive heart failure and an implanted cardiac device. Turk Kardiyoloji Dernegi arsivi: Turk Kardiyoloji Derneginin yayin organidir 46(6), 479–487 (2018). https://doi.org/10.5543/tkda.2018.04134

  5. Weiten, W., Dunn, D.S., Hammer, E.Y.: Psychology applied to modern life: adjustment in the 21st century (2014)

    Google Scholar 

  6. Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010). https://doi.org/10.1109/mcom.2010.5560598

    Article  Google Scholar 

  7. Wang, F., Wang, Y., Wang, J., Xiong, H., Zhao, J., Zhang, D.: Assessing mental stress based on smartphone sensing data: an empirical study. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (2019). https://doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00200

  8. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. (2018). https://doi.org/10.1155/2018/7068349

    Article  Google Scholar 

  9. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–27 (2009). https://doi.org/10.1561/2200000006

    Article  MathSciNet  MATH  Google Scholar 

  10. Khan, S., Yairi, T.: A review on the application of deep learning in system health management. Mech. Syst. Sig. Process. (2018). https://doi.org/10.1016/j.ymssp.2017.11.024

    Article  Google Scholar 

  11. Wang, R., et al.: StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. UbiComp (2014). https://doi.org/10.1145/2632048.2632054

  12. Sano, A., Picard, R.W.: Stress recognition using wearable sensors and mobile phones. In: Humaine Association Conference on Affective Computing and Intelligent Interaction, vol. 24, pp. 386–396 (2013). https://doi.org/10.1109/ACII.2013.117

  13. Sano, A., et al.: Recognizing academic performance, sleep quality, stress level and mental health using personality traits, wearable sensors and mobile phones. Draft Body Sens. Netw. 24, 386–396 (2015). https://doi.org/10.1109/BSN.2015.7299420

  14. Wang, R., et al.: Tracking depression dynamics in college students using mobile phone and wearable sensing. Proc. ACM Interact. Mob. Wear. Ubiquit. Technol. 2 (2018). https://doi.org/10.1145/3191775

  15. Bauer, G., Lukowicz, P.: Can smartphones detect stress-related changes in the behaviour of individuals? In: IEEE International Conference on Pervasive Computing and Communications Workshops. IEEE (2012). https://doi.org/10.1109/PerComW.2012.6197525

  16. Bogomolov, A., Lepri, B., Ferron, M., Pianesi, F., Pentland, A.S.: Daily stress recognition from mobile phone data, weather conditions and individual traits. In: Proceedings of the 22nd ACM International Conference on Multimedia, New York, NY, USA. ACM (2014). 10.1145/ 2647868.2654933

    Google Scholar 

  17. Osmani, V., Ferdous, R., Mayora, O.: Smartphone app usage as a predictor of perceived stress levels at workplace. In: Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare (2015). https://doi.org/10.4108/icst.pervasivehealth

  18. Lu, H., et al.: StressSense: detecting stress in unconstrained acoustic environments using smartphones. In: Proceedings of the ACM Conference on Ubiquitous Computing. ACM (2012). https://doi.org/10.1145/2370216.2370270

  19. Carneiro, D., Carlos Castillo, J., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal behavioral analysis for non-invasive stress detection. Expert Syst. Appl. 39(18), 13376–13389 (2012). https://doi.org/10.1016/j.eswa.2012.05.065

    Article  Google Scholar 

  20. Garcia-Ceja, E., Osmani, V., Mayora, O.: Automatic stress detection in working environments from smartphones’ accelerometer data: a first step. IEEE J. Biomed. Health Inform. 20(4), 1053–1060 (2016). https://doi.org/10.1109/jbhi.2015.2446195

    Article  Google Scholar 

  21. Exposito, M., Hernandez, J., Picard, R.W.: Affective keys: towards unobtrusive stress sensing of smartphone users. In: Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. ACM (2018). https://doi.org/10.1145/3236112.3236132

  22. Sarsenbayeva, Z., et al.: Measuring the effects of stress on mobile interaction. Proc. ACM Interact. Mob. Wear. Ubiquit. Technol. (2019). https://doi.org/10.1145/3314411

    Article  Google Scholar 

  23. Shaw, A., Simsiri, N., Deznaby, I., Fiterau, M., Rahman, T.: Personalized Student Stress Prediction with Deep Multitask Network. ArXiv (2019)

    Google Scholar 

  24. Acikmese, Y., Alptekin, S.E.: Prediction of stress levels with LSTM and passive mobile sensors. Pro. Comput. Sci. 159, 658–667 (2019). https://doi.org/10.1016/j.procs.2019.09.221

    Article  Google Scholar 

  25. Yu, H., Sano, A.: Passive sensor data based future mood, health, and stress prediction: user adaptation using deep learning. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (2020). https://doi.org/10.1109/embc44109.2020.917624

  26. Maxhuni, A., Hernandez-Leal, P., Sucar, L.E., Osmani, V., Morales, E.F., Mayora, O.: Stress modelling and prediction in presence of scarce data. J. Biomed. Inform. 63, 344–356 (2016). https://doi.org/10.1016/j.jbi.2016.08.023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrine Kadri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kadri, N., Turki, S.H., Ellouze, A., Ksantini, M. (2022). An Hybrid Deep Learning Approach for Prediction and Binary Classification of Student’s Stress. In: Bennour, A., Ensari, T., Kessentini, Y., Eom, S. (eds) Intelligent Systems and Pattern Recognition. ISPR 2022. Communications in Computer and Information Science, vol 1589. Springer, Cham. https://doi.org/10.1007/978-3-031-08277-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08277-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08276-4

  • Online ISBN: 978-3-031-08277-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics