Abstract
Anomaly detection is concerned with identifying rare events/observations that differ substantially from the majority of the data. It is considered an important task in the energy sector to enable the identification of non-standard device conditions. The use of anomaly detection techniques in small-scale residential and industrial settings can provide useful insights about device health, maintenance requirements, and downtime, which in turn can lead to lower operating costs. There are numerous approaches for detecting anomalies in a range of application scenarios such as prescriptive appliance maintenance. This work reports on anomaly detection using a data set of fridge power consumption that operates on a near zero energy building scenario. We implement a variety of machine and deep learning algorithms and evaluate performances using multiple metrics. In the light of the present state of the art, the contribution of this work is the development of a inference pipeline that incorporates numerous methodologies and algorithms capable of producing high accuracy results for detecting appliance failures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anoganL fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)
Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7. IEEE (2015)
Sanz, B., Santos, I., Ugarte-Pedrero, X., Laorden, C., Nieves, J., Bringas, P.G.: Anomaly detection using string analysis for android malware detection. In: International Joint Conference SOCO 2013-CISIS 2013-ICEUTE 2013, pp. 469–478. Springer (2014)
Koukaras, P., Bezas, N., Gkaidatzis, P., Ioannidis, D., Tzovaras, D., Tjortjis, C.: Introducing a novel approach in one-step ahead energy load forecasting. Sustain. Comput. Inform. Syst. 32, 100616 (2021)
Koukaras, P., Tjortjis, C., Gkaidatzis, P., Bezas, N., Ioannidis, D., Tzovaras, D.: An interdisciplinary approach on efficient virtual microgrid to virtual microgrid energy balancing incorporating data preprocessing techniques. Computing 104(1), 209–250 (2021). https://doi.org/10.1007/s00607-021-00929-7
Zhou, X., et al.: A state of the art survey of data mining-based fraud detection and credit scoring. In: MATEC Web of Conferences, vol. 189, pp. 03002. EDP Sciences (2018)
Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, Berlin (1980)
Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet of Things J. 7(7), 6481–6494 (2019)
Brockwell, P.J., Davis, R.A.: Time series: theory and methods. Springer Science & Business Media (2009)
Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv preprint arXiv:1901.03407 (2019)
Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-series data: review, analysis, and guidelines. IEEE Access (2021)
Pincombe, B.: Anomaly detection in time series of graphs using arma processes. Asor Bull. 24(4), 2 (2005)
Moayedi, H.Z., Masnadi-Shirazi, M.A.: Arima model for network traffic prediction and anomaly detection. In: 2008 International Symposium on Information Technology, vol. 4, pp. 1–6. IEEE (2008)
Yaacob, A.H., Tan, I.K.T., Fong Chien, S., Tan, H.K.: Arima based network anomaly detection. In: 2010 Second International Conference on Communication Software and Networks, pp. 205–209. IEEE (2010)
Idé, T.: Why does subsequence time-series clustering produce sine waves? In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 211–222. Springer, Heidelberg (2006). https://doi.org/10.1007/11871637_23
Çelik, M., Dadaşer-Çelik, F., Şakir Dokuz, A.: Anomaly detection in temperature data using DBSCAN algorithm. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications, pp. 91–95. IEEE (2011)
Oehmcke, S., Zielinski, O., Kramer, O.: Event detection in marine time series data. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 279–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24489-1_24
Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proc. Vol. 46(20), 12–17 (2013)
Ma, J., Perkins, S.: Time-series novelty detection using one-class support vector machines. In: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 3, pp. 1741–1745. IEEE (2003)
Medsker, L.R., Jain, L.C.: Recurrent neural networks. Design Appl. 5, 64–67 (2001)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al.: Long short term memory networks for anomaly detection in time series. In: Proceedings 89, 89–94 (2015)
Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control network data with long short-term memory networks. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 130–139. IEEE (2016)
Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: Deepant: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access, 7, 1991–2005 (2018)
Hsieh, R.J., Chou, J., Ho, C.H.: Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing. In: 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA), pp. 90–97. IEEE (2019)
Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018)
Guo, Y., Liao, W., Wang, Q., Yu, L., Ji, T., Li, P.: Multidimensional time series anomaly detection: a GRU-based gaussian mixture variational autoencoder approach. In: Asian Conference on Machine Learning, pp. 97–112. PMLR (2018)
Wen, T., Keyes, R.: Time series anomaly detection using convolutional neural networks and transfer learning. arXiv preprint arXiv:1905.13628 (2019)
Choi, Y., Lim, H., Choi, H., Kim, I.G.: Gan-based anomaly detection and localization of multivariate time series data for power plant. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 71–74. IEEE (2020)
Fu, X., Luo, H., Zhong, S., Lin, l.: Aircraft engine fault detection based on grouped convolutional denoising autoencoders. Chin. J. Aeronautics, 32(2), 296–307 (2019)
Rashid, H., Stankovic, V., Stankovic, L., Singh, P.: Evaluation of non-intrusive load monitoring algorithms for appliance-level anomaly detection. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8325–8329. IEEE (2019)
Murray, D., Stankovic, L., Stankovic, V.: An electrical load measurements dataset of united kingdom households from a two-year longitudinal study. Sci. Data 4(1), 1–12 (2017)
Weng, Yu., Zhang, N., Xia, C.: Multi-agent-based unsupervised detection of energy consumption anomalies on smart campus. IEEE Access 7, 2169–2178 (2018)
Makonin, S., Ellert, B., Bajić, I.V., Popowich, F.: Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Sci. Data, 3(1), 1–12 (2016)
Koukaras, P., et al.: A tri-layer optimization framework for day-ahead energy scheduling based on cost and discomfort minimization. Energies, 14(12) (2021)
Acknowledgements
This work is supported by the project PRECEPT - A novel decentralized edge-enabled PREsCriptivE and ProacTive framework for increased energy efficiency and well-being in residential buildings funded by the EU H2020 Programme, grant agreement no. 958284.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Zangrando, N. et al. (2022). Anomaly Detection in Small-Scale Industrial and Household Appliances. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-08341-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08340-2
Online ISBN: 978-3-031-08341-9
eBook Packages: Computer ScienceComputer Science (R0)