Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Anomaly Detection in Small-Scale Industrial and Household Appliances

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops (AIAI 2022)

Abstract

Anomaly detection is concerned with identifying rare events/observations that differ substantially from the majority of the data. It is considered an important task in the energy sector to enable the identification of non-standard device conditions. The use of anomaly detection techniques in small-scale residential and industrial settings can provide useful insights about device health, maintenance requirements, and downtime, which in turn can lead to lower operating costs. There are numerous approaches for detecting anomalies in a range of application scenarios such as prescriptive appliance maintenance. This work reports on anomaly detection using a data set of fridge power consumption that operates on a near zero energy building scenario. We implement a variety of machine and deep learning algorithms and evaluate performances using multiple metrics. In the light of the present state of the art, the contribution of this work is the development of a inference pipeline that incorporates numerous methodologies and algorithms capable of producing high accuracy results for detecting appliance failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anoganL fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Google Scholar 

  2. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7. IEEE (2015)

    Google Scholar 

  3. Sanz, B., Santos, I., Ugarte-Pedrero, X., Laorden, C., Nieves, J., Bringas, P.G.: Anomaly detection using string analysis for android malware detection. In: International Joint Conference SOCO 2013-CISIS 2013-ICEUTE 2013, pp. 469–478. Springer (2014)

    Google Scholar 

  4. Koukaras, P., Bezas, N., Gkaidatzis, P., Ioannidis, D., Tzovaras, D., Tjortjis, C.: Introducing a novel approach in one-step ahead energy load forecasting. Sustain. Comput. Inform. Syst. 32, 100616 (2021)

    Google Scholar 

  5. Koukaras, P., Tjortjis, C., Gkaidatzis, P., Bezas, N., Ioannidis, D., Tzovaras, D.: An interdisciplinary approach on efficient virtual microgrid to virtual microgrid energy balancing incorporating data preprocessing techniques. Computing 104(1), 209–250 (2021). https://doi.org/10.1007/s00607-021-00929-7

    Article  Google Scholar 

  6. Zhou, X., et al.: A state of the art survey of data mining-based fraud detection and credit scoring. In: MATEC Web of Conferences, vol. 189, pp. 03002. EDP Sciences (2018)

    Google Scholar 

  7. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, Berlin (1980)

    Google Scholar 

  8. Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet of Things J. 7(7), 6481–6494 (2019)

    Google Scholar 

  9. Brockwell, P.J., Davis, R.A.: Time series: theory and methods. Springer Science & Business Media (2009)

    Google Scholar 

  10. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv preprint arXiv:1901.03407 (2019)

  11. Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-series data: review, analysis, and guidelines. IEEE Access (2021)

    Google Scholar 

  12. Pincombe, B.: Anomaly detection in time series of graphs using arma processes. Asor Bull. 24(4), 2 (2005)

    Google Scholar 

  13. Moayedi, H.Z., Masnadi-Shirazi, M.A.: Arima model for network traffic prediction and anomaly detection. In: 2008 International Symposium on Information Technology, vol. 4, pp. 1–6. IEEE (2008)

    Google Scholar 

  14. Yaacob, A.H., Tan, I.K.T., Fong Chien, S., Tan, H.K.: Arima based network anomaly detection. In: 2010 Second International Conference on Communication Software and Networks, pp. 205–209. IEEE (2010)

    Google Scholar 

  15. Idé, T.: Why does subsequence time-series clustering produce sine waves? In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 211–222. Springer, Heidelberg (2006). https://doi.org/10.1007/11871637_23

  16. Çelik, M., Dadaşer-Çelik, F., Şakir Dokuz, A.: Anomaly detection in temperature data using DBSCAN algorithm. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications, pp. 91–95. IEEE (2011)

    Google Scholar 

  17. Oehmcke, S., Zielinski, O., Kramer, O.: Event detection in marine time series data. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 279–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24489-1_24

  18. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proc. Vol. 46(20), 12–17 (2013)

    Google Scholar 

  19. Ma, J., Perkins, S.: Time-series novelty detection using one-class support vector machines. In: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 3, pp. 1741–1745. IEEE (2003)

    Google Scholar 

  20. Medsker, L.R., Jain, L.C.: Recurrent neural networks. Design Appl. 5, 64–67 (2001)

    Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  22. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  23. Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al.: Long short term memory networks for anomaly detection in time series. In: Proceedings 89, 89–94 (2015)

    Google Scholar 

  24. Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control network data with long short-term memory networks. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 130–139. IEEE (2016)

    Google Scholar 

  25. Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: Deepant: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access, 7, 1991–2005 (2018)

    Google Scholar 

  26. Hsieh, R.J., Chou, J., Ho, C.H.: Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing. In: 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA), pp. 90–97. IEEE (2019)

    Google Scholar 

  27. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018)

    Google Scholar 

  28. Guo, Y., Liao, W., Wang, Q., Yu, L., Ji, T., Li, P.: Multidimensional time series anomaly detection: a GRU-based gaussian mixture variational autoencoder approach. In: Asian Conference on Machine Learning, pp. 97–112. PMLR (2018)

    Google Scholar 

  29. Wen, T., Keyes, R.: Time series anomaly detection using convolutional neural networks and transfer learning. arXiv preprint arXiv:1905.13628 (2019)

  30. Choi, Y., Lim, H., Choi, H., Kim, I.G.: Gan-based anomaly detection and localization of multivariate time series data for power plant. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 71–74. IEEE (2020)

    Google Scholar 

  31. Fu, X., Luo, H., Zhong, S., Lin, l.: Aircraft engine fault detection based on grouped convolutional denoising autoencoders. Chin. J. Aeronautics, 32(2), 296–307 (2019)

    Google Scholar 

  32. Rashid, H., Stankovic, V., Stankovic, L., Singh, P.: Evaluation of non-intrusive load monitoring algorithms for appliance-level anomaly detection. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8325–8329. IEEE (2019)

    Google Scholar 

  33. Murray, D., Stankovic, L., Stankovic, V.: An electrical load measurements dataset of united kingdom households from a two-year longitudinal study. Sci. Data 4(1), 1–12 (2017)

    Google Scholar 

  34. Weng, Yu., Zhang, N., Xia, C.: Multi-agent-based unsupervised detection of energy consumption anomalies on smart campus. IEEE Access 7, 2169–2178 (2018)

    Article  Google Scholar 

  35. Makonin, S., Ellert, B., Bajić, I.V., Popowich, F.: Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Sci. Data, 3(1), 1–12 (2016)

    Google Scholar 

  36. Koukaras, P., et al.: A tri-layer optimization framework for day-ahead energy scheduling based on cost and discomfort minimization. Energies, 14(12) (2021)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the project PRECEPT - A novel decentralized edge-enabled PREsCriptivE and ProacTive framework for increased energy efficiency and well-being in residential buildings funded by the EU H2020 Programme, grant agreement no. 958284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zangrando, N. et al. (2022). Anomaly Detection in Small-Scale Industrial and Household Appliances. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08341-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08340-2

  • Online ISBN: 978-3-031-08341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics