Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Personalized Federated Learning Algorithm for One-Class Support Vector Machine: An Application in Anomaly Detection

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

Federated Learning (FL) has recently emerged as a promising method that employs a distributed learning model structure to overcome data privacy and transmission issues paused by central machine learning models. In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server). However, this distributed learning approach presents unique learning challenges as the data used at local clients can be non-IID (Independent and Identically Distributed) and statistically diverse which decrease learning accuracy in the central model. In this paper, we overcome this problem by proposing a novel personalized federated learning method based One-Class Support Vector Machine (FedP-OCSVM) to personalize the resulting support vectors at each client. Our experimental validation showed that our FedP-OCSVM precisely constructed generalized clients’ models and thus achieved higher accuracy compared to other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The two bridges are operational and the companies which monitor them requested to keep the bridge name and the collected data about its health confidential.

References

  1. Anaissi, A., Goyal, M., Catchpoole, D.R., Braytee, A., Kennedy, P.J.: Ensemble feature learning of genomic data using support vector machine. PloS One 11(6), e0157330 (2016)

    Article  Google Scholar 

  2. Anaissi, A., et al.: Adaptive one-class support vector machine for damage detection in structural health monitoring. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 42–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_4

  3. Anaissi, A., Khoa, N.L.D., Rakotoarivelo, T., Alamdari, M.M., Wang, Y.: Self-advised incremental one-class support vector machines: an application in structural health monitoring. In: International Conference on Neural Information Processing. pp. 484–496. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_51

  4. Anaissi, A., Khoa, N.L.D., Rakotoarivelo, T., Alamdari, M.M., Wang, Y.: Adaptive online one-class support vector machines with applications in structural health monitoring. ACM Trans. Intell. Syst. Technol. 9(6), 1–20 (2018)

    Article  Google Scholar 

  5. Anaissi, A., Makki Alamdari, M., Rakotoarivelo, T., Khoa, N.: A tensor-based structural damage identification and severity assessment. Sensors 18(1), 111 (2018)

    Article  Google Scholar 

  6. Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning with personalization layers. arXiv preprint arXiv:1912.00818 (2019)

  7. Chen, F., Luo, M., Dong, Z., Li, Z., He, X.: Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876 (2018)

  8. Khoa, N.L.D., Anaissi, A., Wang, Y.: Smart infrastructure maintenance using incremental tensor analysis. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 959–967. ACM (2017)

    Google Scholar 

  9. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  10. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

  11. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  12. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Anaissi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anaissi, A., Suleiman, B., Alyassine, W. (2022). A Personalized Federated Learning Algorithm for One-Class Support Vector Machine: An Application in Anomaly Detection. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics