Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Two-Dimensional vs. Scalar Control of Blood Glucose Level in Diabetic Patients

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1429))

Included in the following conference series:

  • 375 Accesses

Abstract

Closed-loop controllers for insulin pumps have been on the market for some time. It has been shown that modified PID or MPC control algorithms are best suited for artificial pancreas. However, due to nonnegative control values only and relatively slow dynamics of the response to insulin input, they are not well equipped to deal with hypoglycemia induced by a physical effort. This paper is focused on that aspect of blood glucose control. Two alternative solutions are proposed and compared. The first one is based on feedforward, with additional information about future physical effort entered by the user. The second approach uses an additional control in the form of glucagon. Simulation is run for a fixed scenario of three meals and additional physical effort that affects the insulin-glucose system for a cohort of virtual patients, for whom model parameters were sampled. Performance of control systems is evaluated with several quality indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American diabetes association. 6. glycemic targets. Diabetes Care 40(Supplement 1), S48–S56 (2016). https://doi.org/10.2337/dc17-S009

  2. Bergman, R.: The minimal model: yesterday, today and tomorrow. In: R. Bergman, J. Lovejoy (eds.) The minimal model approach and determinants of glucose tolerance. Louisiana University Press, Baton Rouge, USA (1997)

    Google Scholar 

  3. Bertachi, A., Ramkissoon, C.M., Bondia, J., Vehí, J.: Automated blood glucose control in type 1 diabetes: a review of progress and challenges. Endocrinología, Diabetes y Nutrición 65(3), 172–181 (2018). https://doi.org/10.1016/j.endinu.2017.10.011

    Article  Google Scholar 

  4. Blauw, H., Onvlee, A.J., Klaassen, M., van Bon, A.C., DeVries, J.H.: Fully closed loop glucose control with a bihormonal artificial pancreas in adults with type 1 diabetes: an outpatient, randomized, crossover trial. Diab. Care 44(3), 836–838 (2021). https://doi.org/10.2337/dc20-2106

    Article  Google Scholar 

  5. van Bon, A.C., Luijf, Y.M., Koebrugge, R., Koops, R., Hoekstra, J.B., DeVries, J.H.: Feasibility of a portable bihormonal closed-loop system to control glucose excursions at home under free-living conditions for 48 hours. Diab. Technol. Ther. 16(3), 131–136 (2014). https://doi.org/10.1089/dia.2013.0166

    Article  Google Scholar 

  6. Brun, J., Guintrand-Hugret, R., Boegner, C., Bouix, O., Orsetti, A.: Influence of short-term submaximal exercise on parameters of glucose assimilation analyzed with the minimal model. Metabolism 44(7), 833–840 (1995). https://doi.org/10.1016/0026-0495(95)90234-1

    Article  Google Scholar 

  7. Colmegna, P.H., Bianchi, F.D., Sanchez-Pena, R.S.: Automatic glucose control during meals and exercise in type 1 diabetes: Proof-of-concept in silico tests using a switched LPV approach. IEEE Control Syst. Lett. 5(5), 1489–1494 (2021). https://doi.org/10.1109/lcsys.2020.3041211

    Article  MathSciNet  Google Scholar 

  8. Herrero, P., Georgiou, P., Oliver, N., Reddy, M., Johnston, J., Toumazou, C.: A composite model of glucagon-glucose dynamics for in silico testing of bihormonal glucose controllers. J. Diab. Sci. Technol. 7(4), 941–951 (2013). https://doi.org/10.1177/193229681300700416

    Article  Google Scholar 

  9. Hirsch, I.: Type 1 diabetes mellitus and the use of flexible insulin regimens. Am. Family Phys. 60(8), 2343–2356 (1999)

    Google Scholar 

  10. Hovorka, R., et al.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Phys. Measur. 25(4), 905–920 (2004)

    Article  Google Scholar 

  11. Briscoe, V., Davis, S.: Hypoglycemia in Type 1 Diabetes. In: Type 1 Diabetes in Adults, pp. 203–220. CRC Press, Boca Raton (2007)

    Google Scholar 

  12. Lehmann, E., Deutsch, T.: A physiological model of glucose-insulin interaction in type 1 diabetes mellitus. J Biomed. Eng. 14, 235–242 (1992)

    Article  Google Scholar 

  13. Matejko, B., Kukułka, A., Kieć-Wilk, B., Stąpór, A., Klupa, T., Malecki, M.T.: Basal insulin dose in adults with type 1 diabetes mellitus on insulin pumps in real-life clinical practice: a single-center experience. Adv. Med. 2018, 1–5 (2018). https://doi.org/10.1155/2018/1473160

    Article  Google Scholar 

  14. Paiva, H.M., Keller, W.S., da Cunha, L.G.R.: Blood-glucose regulation using fractional-order PID Control. J. Control Autom. Electr. Syst. 31(1), 1–9 (2019). https://doi.org/10.1007/s40313-019-00552-0

    Article  Google Scholar 

  15. Śmieja, J., Gałuszka, A.: Rule-based pid control of blood glucose level. In: A. Świerniak, J. Krystek (eds.) ’Teoria i zastosowania. T. 2’. Wydawnictwo Politechniki Ślaskiej, Gliwice (2018)

    Google Scholar 

  16. Tabassum, M.F., Farman, M., Naik, P.A., Ahmad, A., Ahmad, A.S., Hassan, S.M.: Modeling and simulation of glucose insulin glucagon algorithm for artificial pancreas to control the diabetes mellitus. Netw. Model. Anal. Health Inf. Bioinf. 10(1), 1–8 (2021). https://doi.org/10.1007/s13721-021-00316-4

    Article  Google Scholar 

  17. Taleb, N., et al.: Efficacy of single-hormone and dual-hormone artificial pancreas during continuous and interval exercise in adult patients with type 1 diabetes: randomised controlled crossover trial. Diabetologia 59(12), 2561–2571 (2016). https://doi.org/10.1007/s00125-016-4107-0

    Article  Google Scholar 

  18. Taleb, N., Haidar, A., Messier, V., Gingras, V., Legault, L., Rabasa-Lhoret, R.: Glucagon in artificial pancreas systems: potential benefits and safety profile of future chronic use. Diabetes Obes. Metab. 19(1), 13–23 (2016). https://doi.org/10.1111/dom.12789

    Article  Google Scholar 

  19. Wendt, S., et al.: Model of the glucose-insulin-glucagon dynamics after subcutaneous administration of a glucagon rescue bolus in healthy humans. In: Proceedings of The American Diabetes Association’s 76th Scientific Sessions. The American Diabetes Association, New Orleans, Louisiana, United States (2016)

    Google Scholar 

  20. Global Report on Diabetes. World Health Organisation (2016)

    Google Scholar 

  21. Guidelines on second- and third-line medicines and type of insulin for the control of blood glucose levels in non-pregnant adults with diabetes mellitus. World Health Organisation, Geneva (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the SUT internal grant for young researchers (AW) and the SUT internal grant 02/040/BK_21/1022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Wyciślok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Śmieja, J., Wyciślok, A. (2022). Two-Dimensional vs. Scalar Control of Blood Glucose Level in Diabetic Patients. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_43

Download citation

Publish with us

Policies and ethics