Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Compiler to Covert Security with Public Verifiability for Honest Majority MPC

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13269))

Included in the following conference series:

Abstract

We present a novel compiler for transforming arbitrary, passively secure MPC protocols into efficient protocols with covert security and public verifiability in the honest majority setting. Our compiler works for protocols with any number of parties \(> 2\) and treats the passively secure protocol in a black-box manner.

In multi-party computation (MPC), covert security provides an attractive trade-off between the security of actively secure protocols and the efficiency of passively secure protocols. In this security notion, honest parties are only required to detect an active attack with some constant probability, referred to as the deterrence rate. Extending covert security with public verifiability additionally ensures that any party, even an external one not participating in the protocol, is able to identify the cheaters if an active attack has been detected.

Recently, Faust et al. (EUROCRYPT 2021) and Scholl et al. (Pre-print 2021) introduced similar covert security compilers based on computationally expensive time-lock puzzles. At the cost of requiring an honest majority, our work avoids the use of time-lock puzzles completely. Instead, we adopt a much more efficient publicly verifiable secret sharing scheme to achieve a similar functionality. This obviates the need for a trusted setup and a general-purpose actively secure MPC protocol. We show that our computation and communication costs are orders of magnitude lower while achieving the same deterrence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Full version of this paper. IACR ePrint 2022/454

    Google Scholar 

  2. Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public verifiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 681–698. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_41

    Chapter  Google Scholar 

  3. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_8

    Chapter  Google Scholar 

  4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513 (1990)

    Google Scholar 

  6. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation via distributed zero-knowledge proofs. In: ASIACRYPT 2020, Part III, pp. 244–276 (2020)

    Google Scholar 

  7. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: 26th FOCS, pp. 383–395 (1985)

    Google Scholar 

  8. Damgård, I., Geisler, M., Nielsen, J.B.: From passive to covert security at low cost. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 128–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_9

    Chapter  Google Scholar 

  9. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

    Chapter  Google Scholar 

  10. Damgård, I., Orlandi, C., Simkin, M.: Black-box transformations from passive to covert security with public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 647–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_23

    Chapter  Google Scholar 

  11. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  12. Faust, S., Hazay, C., Kretzler, D., Schlosser, B.: Generic compiler for publicly verifiable covert multi-party computation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 782–811. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_27

    Chapter  Google Scholar 

  13. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against covert adversaries. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_17

    Chapter  Google Scholar 

  14. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_22

    Chapter  Google Scholar 

  15. Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security with public verifiability: faster, leaner, and simpler. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 97–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_4

    Chapter  Google Scholar 

  16. Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model (Almost) for free. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 210–235. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_9

    Chapter  MATH  Google Scholar 

  17. Reiter, M.K.: Secure agreement protocols: reliable and atomic group multicast in rampart. In: ACM CCS 1994, pp. 68–80 (1994)

    Google Scholar 

  18. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_10

    Chapter  Google Scholar 

  19. Scholl, P., Simkin, M., Siniscalchi, L.: Multiparty computation with covert security and public verifiability. IACR Cryptol. ePrint Archive, p. 366 (2021)

    Google Scholar 

  20. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–613 (1979)

    MathSciNet  MATH  Google Scholar 

  21. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_17

    Chapter  Google Scholar 

  22. Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation and authenticated garbling. In: ACM CCS 2020, pp. 1627–1646 (2020)

    Google Scholar 

Download references

Acknowledgements

The research activities that led to this result were funded by ABN AMRO, CWI, De Volksbank, Rabobank, TMNL, PPS-surcharge for Research and Innovation of the Dutch Ministry of Economic Affairs and Climate Policy, TNO’s Appl. AI programme and the Vraaggestuurd Programma Cyber Security & Resilience, part of the Dutch Top Sector High Tech Systems and Materials program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Dunning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Attema, T., Dunning, V., Everts, M., Langenkamp, P. (2022). Efficient Compiler to Covert Security with Public Verifiability for Honest Majority MPC. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09234-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09233-6

  • Online ISBN: 978-3-031-09234-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics