Abstract
This paper presents an online system that leverages social media data in real time to identify landslide-related information automatically using state-of-the-art artificial intelligence techniques. The designed system can (i) reduce the information overload by eliminating duplicate and irrelevant content, (ii) identify landslide images, (iii) infer geolocation of the images, and (iv) categorize the user type (organization or person) of the account sharing the information. The system was deployed in February 2020 online at https://landslide-aidr.qcri.org/landslide_system.php to monitor live Twitter data stream and has been running continuously since then to provide time-critical information to partners such as British Geological Survey and European Mediterranean Seismological Centre. We trust this system can both contribute to harvesting of global landslide data for further research and support global landslide maps to facilitate emergency response and decision making.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://gpm.nasa.gov/landslides/index.html (accessed on 12 February 2022).
- 2.
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/guides/connecting (accessed on 24 March 2022).
- 3.
https://redis.io/ (accessed on 24 March 2022).
- 4.
https://spacy.io/usage/models (accessed on 24 March 2022).
- 5.
The pre-trained model is available at http://places2.csail.mit.edu/models_places365/resnet50_places365.pth.tar (accessed on Jan 23, 2022).
References
Alfarrarjeh, A., Agrawal, S., Kim, S.H., Shahabi, C.: Geo-spatial multimedia sentiment analysis in disasters. In: DSAA, pp. 193–202 (2017)
Can, R., Kocaman, S., Gokceoglu, C.: A convolutional neural network architecture for auto-detection of landslide photographs to assess citizen science and volunteered geographic information data quality. ISPRS Int. J. Geo-Inf. 8(7), 300 (2019)
Can, R., Kocaman, S., Gokceoglu, C.: Development of a CitSci and artificial intelligence supported GIS platform for landslide data collection. Int. Arch. Photogramm. 43, 43–50 (2020)
Cheng, G., Guo, L., Zhao, T., Han, J., Li, H., Fang, J.: Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA. Int. J. Remote Sens. 34(1), 45–59 (2013)
Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21(1), 1–13 (2020)
Choi, C.E., Cui, Y., Zhou, G.G.: Utilizing crowdsourcing to enhance the mitigation and management of landslides. Landslides 15(9), 1889–1899 (2018)
Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML, pp. 647–655 (2014)
Froude, M.J., Petley, D.N.: Global fatal landslide occurrence from 2004 to 2016. Nat. Hazard Earth Syst. 18(8), 2161–2181 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Imran, M., Alam, F., Qazi, U., Peterson, S., Ofli, F.: Rapid damage assessment using social media images by combining human and machine intelligence. In: ISCRAM, pp. 1–13, May 2020
Imran, M., Castillo, C., Lucas, J., Meier, P., Vieweg, S.: AIDR: artificial intelligence for disaster response. In: WWW, pp. 159–162 (2014)
Imran, M., Qazi, U., Ofli, F.: TBCOV: two billion multilingual COVID-19 tweets with sentiment, entity, geo, and gender labels. Data 7(1), 8 (2022)
Ji, S., Yu, D., Shen, C., Li, W., Xu, Q.: Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 17(6), 1337–1352 (2020). https://doi.org/10.1007/s10346-020-01353-2
Juang, C.S., Stanley, T.A., Kirschbaum, D.B.: Using citizen science to expand the global map of landslides: introducing the Cooperative Open Online Landslide Repository (COOLR). PLoS ONE 14(7), e0218657 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Kjekstad, O., Highland, L.: Economic and social impacts of landslides. In: Sassa, K., Canuti, P. (eds.) Landslides – Disaster Risk Reduction. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-69970-5_30
Kocaman, S., Gokceoglu, C.: A CitSci app for landslide data collection. Landslides 16(3), 611–615 (2018). https://doi.org/10.1007/s10346-018-1101-2
Lee, E.M., Jones, D.K.: Landslide Risk Assessment, vol. 10. Thomas Telford, London (2004)
Merghadi, A., et al.: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth-Sci. Rev. 207, 103225 (2020)
Mohan, A., Singh, A.K., Kumar, B., Dwivedi, R.: Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerg. Telecommun. Technol. 32(7), e3998 (2021)
Musaev, A., Wang, D., Pu, C.: LITMUS: landslide detection by integrating multiple sources. In: ISCRAM (2014)
Musaev, A., Wang, D., Shridhar, S., Pu, C.: Fast text classification using randomized explicit semantic analysis. In: IRI, pp. 364–371. IEEE (2015)
Musaev, A., Wang, D., Xie, J., Pu, C.: REX: rapid ensemble classification system for landslide detection using social media. In: ICDCS, pp. 1240–1249. IEEE (2017)
Nguyen, D.T., Alam, F., Ofli, F., Imran, M.: Automatic image filtering on social networks using deep learning and perceptual hashing during crises. In: ISCRAM, pp. 499–511, May 2017
Ofli, F., Alam, F., Imran, M.: Analysis of social media data using multimodal deep learning for disaster response. In: ISCRAM, pp. 1–10, May 2020
Ofli, F., et al.: Landslide detection in real-time social media image streams. arXiv preprint arXiv:2110.04080 (2021)
Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR, pp. 1717–1724 (2014)
Pennington, C., Freeborough, K., Dashwood, C., Dijkstra, T., Lawrie, K.: The national landslide database of great Britain: acquisition, communication and the role of social media. Geomorphology 249, 44–51 (2015)
Prakash, N., Manconi, A., Loew, S.: Mapping landslides on EO data: performance of deep learning models vs. traditional machine learning models. Remote Sens. 12(3), 346 (2020)
Prakash, N., Manconi, A., Loew, S.: A new strategy to map landslides with a generalized convolutional neural network. Sci. Rep. 11(1), 1–15 (2021)
Ramesh, M.V., Kumar, S., Rangan, P.V.: Wireless sensor network for landslide detection. In: ICWN, pp. 89–95 (2009)
Razis, G., Theofilou, G., Anagnostopoulos, I.: Latent twitter image information for social analytics. Information 12(2), 49 (2021)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: ICLR, April 2014
Tavakkoli Piralilou, S., et al.: Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas. Remote Sens. 11(21), 2575 (2019)
Taylor, F.E., Malamud, B.D., Freeborough, K., Demeritt, D.: Enriching great Britain’s national landslide database by searching newspaper archives. Geomorphology 249, 52–68 (2015)
Tofani, V., Segoni, S., Agostini, A., Catani, F., Casagli, N.: Use of remote sensing for landslide studies in Europe. Nat. Hazard Earth Syst. 13(2), 299–309 (2013)
Weber, E., et al.: Detecting natural disasters, damage, and incidents in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 331–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_20
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. PAMI 40(6), 1452–1464 (2017)
Acknowledgments
The British Geological Survey (UK Research and Innovation) granted supporting research funding through National Capability (Shallow Geohazards) and Innovation funding streams. European-Mediterranean Seismological Centre was partially funded by the European Union’s (EU) Horizon 2020 Research and Innovation Program under Grant Agreement RISE Number 821115. Opinions expressed in this article solely reflect the authors’ views; the EU is not responsible for any use that may be made of information it contains.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Ofli, F. et al. (2022). A Real-Time System for Detecting Landslide Reports on Social Media Using Artificial Intelligence. In: Di Noia, T., Ko, IY., Schedl, M., Ardito, C. (eds) Web Engineering. ICWE 2022. Lecture Notes in Computer Science, vol 13362. Springer, Cham. https://doi.org/10.1007/978-3-031-09917-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-09917-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09916-8
Online ISBN: 978-3-031-09917-5
eBook Packages: Computer ScienceComputer Science (R0)