Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Real-Time System for Detecting Landslide Reports on Social Media Using Artificial Intelligence

  • Conference paper
  • First Online:
Web Engineering (ICWE 2022)

Abstract

This paper presents an online system that leverages social media data in real time to identify landslide-related information automatically using state-of-the-art artificial intelligence techniques. The designed system can (i) reduce the information overload by eliminating duplicate and irrelevant content, (ii) identify landslide images, (iii) infer geolocation of the images, and (iv) categorize the user type (organization or person) of the account sharing the information. The system was deployed in February 2020 online at https://landslide-aidr.qcri.org/landslide_system.php to monitor live Twitter data stream and has been running continuously since then to provide time-critical information to partners such as British Geological Survey and European Mediterranean Seismological Centre. We trust this system can both contribute to harvesting of global landslide data for further research and support global landslide maps to facilitate emergency response and decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gpm.nasa.gov/landslides/index.html (accessed on 12 February 2022).

  2. 2.

    https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/guides/connecting (accessed on 24 March 2022).

  3. 3.

    https://redis.io/ (accessed on 24 March 2022).

  4. 4.

    https://spacy.io/usage/models (accessed on 24 March 2022).

  5. 5.

    The pre-trained model is available at http://places2.csail.mit.edu/models_places365/resnet50_places365.pth.tar (accessed on Jan 23, 2022).

References

  1. Alfarrarjeh, A., Agrawal, S., Kim, S.H., Shahabi, C.: Geo-spatial multimedia sentiment analysis in disasters. In: DSAA, pp. 193–202 (2017)

    Google Scholar 

  2. Can, R., Kocaman, S., Gokceoglu, C.: A convolutional neural network architecture for auto-detection of landslide photographs to assess citizen science and volunteered geographic information data quality. ISPRS Int. J. Geo-Inf. 8(7), 300 (2019)

    Article  Google Scholar 

  3. Can, R., Kocaman, S., Gokceoglu, C.: Development of a CitSci and artificial intelligence supported GIS platform for landslide data collection. Int. Arch. Photogramm. 43, 43–50 (2020)

    Google Scholar 

  4. Cheng, G., Guo, L., Zhao, T., Han, J., Li, H., Fang, J.: Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA. Int. J. Remote Sens. 34(1), 45–59 (2013)

    Article  Google Scholar 

  5. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21(1), 1–13 (2020)

    Article  Google Scholar 

  6. Choi, C.E., Cui, Y., Zhou, G.G.: Utilizing crowdsourcing to enhance the mitigation and management of landslides. Landslides 15(9), 1889–1899 (2018)

    Article  Google Scholar 

  7. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML, pp. 647–655 (2014)

    Google Scholar 

  8. Froude, M.J., Petley, D.N.: Global fatal landslide occurrence from 2004 to 2016. Nat. Hazard Earth Syst. 18(8), 2161–2181 (2018)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Imran, M., Alam, F., Qazi, U., Peterson, S., Ofli, F.: Rapid damage assessment using social media images by combining human and machine intelligence. In: ISCRAM, pp. 1–13, May 2020

    Google Scholar 

  11. Imran, M., Castillo, C., Lucas, J., Meier, P., Vieweg, S.: AIDR: artificial intelligence for disaster response. In: WWW, pp. 159–162 (2014)

    Google Scholar 

  12. Imran, M., Qazi, U., Ofli, F.: TBCOV: two billion multilingual COVID-19 tweets with sentiment, entity, geo, and gender labels. Data 7(1), 8 (2022)

    Article  Google Scholar 

  13. Ji, S., Yu, D., Shen, C., Li, W., Xu, Q.: Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 17(6), 1337–1352 (2020). https://doi.org/10.1007/s10346-020-01353-2

    Article  Google Scholar 

  14. Juang, C.S., Stanley, T.A., Kirschbaum, D.B.: Using citizen science to expand the global map of landslides: introducing the Cooperative Open Online Landslide Repository (COOLR). PLoS ONE 14(7), e0218657 (2019)

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  16. Kjekstad, O., Highland, L.: Economic and social impacts of landslides. In: Sassa, K., Canuti, P. (eds.) Landslides – Disaster Risk Reduction. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-69970-5_30

  17. Kocaman, S., Gokceoglu, C.: A CitSci app for landslide data collection. Landslides 16(3), 611–615 (2018). https://doi.org/10.1007/s10346-018-1101-2

    Article  Google Scholar 

  18. Lee, E.M., Jones, D.K.: Landslide Risk Assessment, vol. 10. Thomas Telford, London (2004)

    Book  Google Scholar 

  19. Merghadi, A., et al.: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth-Sci. Rev. 207, 103225 (2020)

    Article  Google Scholar 

  20. Mohan, A., Singh, A.K., Kumar, B., Dwivedi, R.: Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerg. Telecommun. Technol. 32(7), e3998 (2021)

    Google Scholar 

  21. Musaev, A., Wang, D., Pu, C.: LITMUS: landslide detection by integrating multiple sources. In: ISCRAM (2014)

    Google Scholar 

  22. Musaev, A., Wang, D., Shridhar, S., Pu, C.: Fast text classification using randomized explicit semantic analysis. In: IRI, pp. 364–371. IEEE (2015)

    Google Scholar 

  23. Musaev, A., Wang, D., Xie, J., Pu, C.: REX: rapid ensemble classification system for landslide detection using social media. In: ICDCS, pp. 1240–1249. IEEE (2017)

    Google Scholar 

  24. Nguyen, D.T., Alam, F., Ofli, F., Imran, M.: Automatic image filtering on social networks using deep learning and perceptual hashing during crises. In: ISCRAM, pp. 499–511, May 2017

    Google Scholar 

  25. Ofli, F., Alam, F., Imran, M.: Analysis of social media data using multimodal deep learning for disaster response. In: ISCRAM, pp. 1–10, May 2020

    Google Scholar 

  26. Ofli, F., et al.: Landslide detection in real-time social media image streams. arXiv preprint arXiv:2110.04080 (2021)

  27. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR, pp. 1717–1724 (2014)

    Google Scholar 

  28. Pennington, C., Freeborough, K., Dashwood, C., Dijkstra, T., Lawrie, K.: The national landslide database of great Britain: acquisition, communication and the role of social media. Geomorphology 249, 44–51 (2015)

    Article  Google Scholar 

  29. Prakash, N., Manconi, A., Loew, S.: Mapping landslides on EO data: performance of deep learning models vs. traditional machine learning models. Remote Sens. 12(3), 346 (2020)

    Article  Google Scholar 

  30. Prakash, N., Manconi, A., Loew, S.: A new strategy to map landslides with a generalized convolutional neural network. Sci. Rep. 11(1), 1–15 (2021)

    Article  Google Scholar 

  31. Ramesh, M.V., Kumar, S., Rangan, P.V.: Wireless sensor network for landslide detection. In: ICWN, pp. 89–95 (2009)

    Google Scholar 

  32. Razis, G., Theofilou, G., Anagnostopoulos, I.: Latent twitter image information for social analytics. Information 12(2), 49 (2021)

    Article  Google Scholar 

  33. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  34. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: ICLR, April 2014

    Google Scholar 

  35. Tavakkoli Piralilou, S., et al.: Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas. Remote Sens. 11(21), 2575 (2019)

    Article  Google Scholar 

  36. Taylor, F.E., Malamud, B.D., Freeborough, K., Demeritt, D.: Enriching great Britain’s national landslide database by searching newspaper archives. Geomorphology 249, 52–68 (2015)

    Article  Google Scholar 

  37. Tofani, V., Segoni, S., Agostini, A., Catani, F., Casagli, N.: Use of remote sensing for landslide studies in Europe. Nat. Hazard Earth Syst. 13(2), 299–309 (2013)

    Article  Google Scholar 

  38. Weber, E., et al.: Detecting natural disasters, damage, and incidents in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 331–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_20

    Chapter  Google Scholar 

  39. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. PAMI 40(6), 1452–1464 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The British Geological Survey (UK Research and Innovation) granted supporting research funding through National Capability (Shallow Geohazards) and Innovation funding streams. European-Mediterranean Seismological Centre was partially funded by the European Union’s (EU) Horizon 2020 Research and Innovation Program under Grant Agreement RISE Number 821115. Opinions expressed in this article solely reflect the authors’ views; the EU is not responsible for any use that may be made of information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferda Ofli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ofli, F. et al. (2022). A Real-Time System for Detecting Landslide Reports on Social Media Using Artificial Intelligence. In: Di Noia, T., Ko, IY., Schedl, M., Ardito, C. (eds) Web Engineering. ICWE 2022. Lecture Notes in Computer Science, vol 13362. Springer, Cham. https://doi.org/10.1007/978-3-031-09917-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09917-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09916-8

  • Online ISBN: 978-3-031-09917-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics