Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Computational Power of Energy-Constrained Mobile Robots: Algorithms and Cross-Model Analysis

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2022)

Abstract

We consider distributed systems of identical autonomous computational entities, called robots, moving and operating in the plane in synchronous \( Look \)-\( Compute \)-\( Move \) (\( LCM \)) cycles. The algorithmic capabilities of these systems have been extensively investigated in the literature under four distinct models (\(\mathcal {OBLOT} \), \(\mathcal {FST\!A} \), \(\mathcal {FCOM} \), \(\mathcal {LUMI} \)), each identifying different levels of memory persistence and communication capabilities of the robots. Despite their differences, they all always assume that robots have unlimited amounts of energy.

In this paper, we remove this assumption and start the study of the computational capabilities of robots whose energy is limited, albeit renewable. We first study the impact that memory persistence and communication capabilities have on the computational power of such energy-constrained systems of robots; we do so by analyzing the computational relationship between the four models under this energy constraint. We provide a complete characterization of this relationship.

We then study the difference in computational power caused by the energy restriction and provide a complete characterization of the relationship between energy-constrained and unrestricted robots in each model. We prove that within \(\mathcal {LUMI} \) there is no difference; an integral part of the proof is the design and analysis of an algorithm that in \(\mathcal {LUMI} \) allows energy-constrained robots to execute correctly any protocol for robots with unlimited energy. We then show the (apparently counterintuitive) result that in all other models, the energy constraint actually provides the robots with a computational advantage.

This work was supported in part by JSPS KAKENHI No. 20K11685 and 21K11748, Israel & Japan Science and Technology Agency (JST) SICORP (Grant#JPMJSC1806), and by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Discovery Grants A2415 and 203254.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    OSP is Oscillating Points and CGE* is Perpetual Center of Gravity Expansion.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  Google Scholar 

  2. Buchin, K., Flocchini, P., Kostitsyna, I., Peters, T., Santoro, N., Wada, K.: On the computational power of energy-constrained mobile robots: Algorithms and cross-model analysis. \({\rm ar}\)\({\rm Xiv.org}\) cs(ArXiv:2203.06546) (2022)

  3. Canepa, D., Potop-Butucaru, M.: Stabilizing flocking via leader election in robot networks. In: Proceedings of the 10th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 52–66 (2007)

    Google Scholar 

  4. Cicerone, S., Stefano, D., Navarra, A.: Gathering of robots on meeting-points. Distrib. Comput. 31(1), 1–50 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: Gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MathSciNet  Google Scholar 

  6. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithms in asynchronous robot systems. SIAM J. Comput. 34(15), 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  7. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

    Article  MathSciNet  Google Scholar 

  8. Di Luna, G., Flocchini, P., Chaudhuri, S., Poloni, F., Santoro, N., Viglietta, G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254(3), 392–418 (2017)

    Article  MathSciNet  Google Scholar 

  9. Di Luna, G., Viglietta, G.: Robots with lights. Chapter 11 of [10], pp. 252–277 (2019)

    Google Scholar 

  10. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Mobile Entities. Springer (2019)

    Google Scholar 

  11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool (2012)

    Google Scholar 

  12. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–169 (2005)

    Article  MathSciNet  Google Scholar 

  13. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous oblivious robots. Theor. Comput. Sci. 407, 412–447 (2008)

    Article  MathSciNet  Google Scholar 

  14. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant memory. Theor. Comput. Sci. 621, 57–72 (2016)

    Article  MathSciNet  Google Scholar 

  15. Flocchini, P., Santoro, N., Wada, K.: On memory, communication, and synchronous schedulers when moving and computing. In: Proceedings of the 23rd International Conference on Principles of Distributed Systems (OPODIS), pp. 25:1–25:17 (2019)

    Google Scholar 

  16. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gervasi, V., Prencipe, G.: Coordination without communication: the case of the flocking problem. Disc. Appl. Math. 144(3), 324–344 (2004)

    Article  MathSciNet  Google Scholar 

  18. Hériban, A., Défago, X., Tixeuil, S.: Optimally gathering two robots. In: Proceedings of 19th Int. Conference on Distributed Computing and Networking (ICDCN), pp. 1–10 (2018)

    Google Scholar 

  19. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)

    Article  MathSciNet  Google Scholar 

  20. Okumura, T., Wada, K., Défago, X.: Optimal rendezvous \(\cal{L}\)-algorithms for asynchronous mobile robots with external-lights. In: Proceedings of the 22nd International Conference on Principles of Distributed Systems (OPODIS), pp. 24:1–24:16 (2018)

    Google Scholar 

  21. Okumura, T., Wada, K., Katayama, Y.: Brief announcement: Optimal asynchronous rendezvous for mobile robots with lights. In: Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 484–488 (2017)

    Google Scholar 

  22. Sharma, G., Alsaedi, R., Bush, C., Mukhopadyay, S.: The complete visibility problem for fat robots with lights. In: Proceedings of the 19th International Conference on Distributed Computing and Networking (ICDCN), pp. 21:1–21:4 (2018)

    Google Scholar 

  23. Sharma, G., Vaidyanathan, R., Bush, C., Rai, S., Borzoo, B.: Complete visibility for robots with lights in \(O(1)\) time. In: Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 327–345 (2016)

    Google Scholar 

  24. Sharma, H., Ahteshamul, H., Jaffery, Z.A.: Solar energy harvesting wireless sensor network nodes: a survey. J. Renew. Sustain. Energy 10(2), 023704 (2018)

    Article  Google Scholar 

  25. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

  26. Terai, S., Wada, K., Katayama, Y.: Gathering problems for autonomous mobile robots with lights. \({\rm arXiv{.}org}\) cs(ArXiv:1811.12068) (2018)

  27. Viglietta, G.: Rendezvous of two robots with visible bits. In: 10th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS), pp. 291–306 (2013)

    Google Scholar 

  28. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

    Article  MathSciNet  Google Scholar 

  29. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three-dimensional Euclidean space. J. ACM 64:3(16), 16:1-16:43 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Wada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buchin, K., Flocchini, P., Kostitsyna, I., Peters, T., Santoro, N., Wada, K. (2022). On the Computational Power of Energy-Constrained Mobile Robots: Algorithms and Cross-Model Analysis. In: Parter, M. (eds) Structural Information and Communication Complexity. SIROCCO 2022. Lecture Notes in Computer Science, vol 13298. Springer, Cham. https://doi.org/10.1007/978-3-031-09993-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09993-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09992-2

  • Online ISBN: 978-3-031-09993-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics