Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hash Based Encryption Schemes Using Physically Unclonable Functions

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 508))

Included in the following conference series:

  • 768 Accesses

Abstract

In recent years public key cryptography has been revolutionary developed in cryptosystems. Algorithms such as RSA, ECC and DSA are commonly used as public key cryptography in a variety of applications. The drawback of these protocols is vulnerability against quantum computing. These protocols rely on the computational hardness of finding factorization but Peter Shor has proved that quantum computing can break all the public key cryptosystems that are relying on this factorization. Hash-Based Cryptography has been subject of debates for past few decades since it is known to be resistant to quantum computer attacks and there have been some advancements over this field. But all the available methods are concentrated on the digital signature schemes. None of them have the ability to encrypt and decrypt a plain text. This paper will describe some methods that can be used as encryption and decryption of plain text using hash functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzubi, J.A.: Blockchain-based Lamport Merkle digital signature: authentication tool in IoT healthcare. Comput. Commun. 170, 200–208 (2021)

    Article  Google Scholar 

  2. Assiri, S., Cambou, B.: Homomorphic password manager using multiple-hash with PUF. In: Arai, K. (ed.) FICC 2021. AISC, vol. 1363, pp. 772–792. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73100-7_55

    Chapter  Google Scholar 

  3. Assiri, S., Cambou, B., Booher, D.D., Miandoab, D.G., Mohammadinodoushan, M.: Key exchange using ternary system to enhance security. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0488–0492. IEEE (2019)

    Google Scholar 

  4. Assiri, S., Cambou, B., Booher, D.D., Mohammadinodoushan, M.: Software implementation of a SRAM PUF-based password manager. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) SAI 2020. AISC, vol. 1230, pp. 361–379. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52243-8_26

    Chapter  Google Scholar 

  5. Booher, D.D., Cambou, B., Carlson, A.H., Philabaum, C.: Dynamic key generation for polymorphic encryption. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0482–0487. IEEE (2019)

    Google Scholar 

  6. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6_23

    Chapter  Google Scholar 

  7. Cambou, B., Telesca, D.: Ternary computing to strengthen information assurance. Development of ternary state based public key exchange. In: IEEE, SAI 2018, Computing Conference (2018)

    Google Scholar 

  8. Cambou, B., Flikkema, P.G., Palmer, J., Telesca, D., Philabaum, C.: Can ternary computing improve information assurance? Cryptography 2(1), 6 (2018)

    Article  Google Scholar 

  9. Cambou, B., et al.: Post quantum cryptographic keys generated with physical unclonable functions. Appl. Sci. 11(6), 2801 (2021)

    Article  Google Scholar 

  10. Chang, M.-H., Yeh, Y.-S.: Improving Lamport one-time signature scheme. Appl. Math. Comput. 167(1), 118–124 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_8

    Chapter  Google Scholar 

  12. Gassend, B.: Physical random functions (2003)

    Google Scholar 

  13. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Controlled physical random functions. In: 18th Annual Computer Security Applications Conference 2002, Proceedings, pp. 149–160. IEEE (2002)

    Google Scholar 

  14. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_5

    Chapter  Google Scholar 

  15. Habib, B., Cambou, B., Booher, D., Philabaum, C.: Public key exchange scheme that is addressable (PKA). In: 2017 IEEE Conference on Communications and Network Security (CNS), pp. 392–393. IEEE (2017)

    Google Scholar 

  16. Keshavarz, M., Anwar, M.: Towards improving privacy control for smart homes: a privacy decision framework. In: 2018 16th Annual Conference on Privacy, Security and Trust (PST), pp. 1–3. IEEE (2018)

    Google Scholar 

  17. Keshavarz, M., Shamsoshoara, A., Afghah, F., Ashdown, J.: A real-time framework for trust monitoring in a network of unmanned aerial vehicles. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 677–682. IEEE (2020)

    Google Scholar 

  18. Lamport, L.: Constructing digital signatures from a one-way function. Technical report, Citeseer (1979)

    Google Scholar 

  19. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(10), 1200–1205 (2005)

    Google Scholar 

  20. Maes, R.: Physically Unclonable Functions: Constructions, Properties and Applications. Springer, Heidelberg (2013)

    Google Scholar 

  21. Maes, R., Verbauwhede, I.: Physically unclonable functions: a study on the state of the art and future research directions. In: Sadeghi, A.R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security. ISC, pp. 3–37. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14452-3_1

  22. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

    Chapter  Google Scholar 

  23. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  24. Miandoab, D.G., Assiri, S., Mihaljevic, J., Cambou, B.: Statistical analysis of ReRAM-PUF based keyless encryption protocol against frequency analysis attack. arXiv preprint arXiv:2109.11075 (2021)

  25. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol. In: Proceedings of the 8th ACM Conference on Computer and Communications Security, pp. 28–37 (2001)

    Google Scholar 

  26. Preneel, B.: Cryptographic hash functions. Eur. Trans. Telecommun. 5(4), 431–448 (1994)

    Article  Google Scholar 

  27. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast signing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-0_11

    Chapter  MATH  Google Scholar 

  28. van der Leest, V., van der Sluis, E., Schrijen, G.-J., Tuyls, P., Handschuh, H.: Efficient implementation of true random number generator based on SRAM PUFs. In: Naccache, D. (ed.) Cryptography and Security: From Theory to Applications. LNCS, vol. 6805, pp. 300–318. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28368-0_20

    Chapter  Google Scholar 

  29. Zhu, L.H., Cao, Y.D., Wang, D.: Digital signature of multicast streams secure against adaptive chosen message attack. Comput. Secur. 23(3), 229–240 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Ghanai Miandaob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miandaob, D.G., Booher, D., Cambou, B., Assiri, S. (2022). Hash Based Encryption Schemes Using Physically Unclonable Functions. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 508. Springer, Cham. https://doi.org/10.1007/978-3-031-10467-1_36

Download citation

Publish with us

Policies and ethics