Abstract
Accident injury prediction is a crucial constituent to reducing fatalities linked to vehicle crashes. The vehicle development process and road safety planning includes also the injury prediction for occupants and Vulnerable Road Users (VRUs) in a vehicle crash and the identification of the factors responsible for increased traffic collision injuries. This paper reviews the different data-based prediction techniques to modeling a vehicle crash event, crash frequency and crash severity. Machine learning (ML) is a research field which has gained impetus in the recent years and is widely used in different engineering applications; including injury prediction in vehicle collisions. The paper is divided into two major sections; the first section presents an overview of the existing predictive models for estimating injury severity in a crash event to occupants and VRUs and the second section describes the applications of data-based modeling techniques to predict crash frequency in different traffic scenarios. We also discuss possible future applications of data-based modeling techniques in this domain.
Supported by University of Agder.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdulhafedh, A.: Road crash prediction models: different statistical modeling approaches. J. Transp. Technol. 07(02), 190–205 (2017). https://doi.org/10.4236/jtts.2017.72014
Alkheder, S., Taamneh, M., Taamneh, S.: Severity prediction of traffic accident using an artificial neural network. J. Forecast. 36(1), 100–108 (2017)
Assi, K., Rahman, S.M., Mansoor, U., Ratrout, N.: Predicting crash injury severity with machine learning algorithm synergized with clustering technique: a promising protocol. Accid. Anal. Prev. 17(3), 1–17 (2020). https://doi.org/10.3390/ijerph17155497, http://www.sciencepublishinggroup.com/j/acm
Assi, K., Rahman, S.M., Mansoor, U., Ratrout, N.: Predicting crash injury severity with machine learning algorithm synergized with clustering technique: a promising protocol. Int. J. Environm. Res. Public Health 17(15), 1–17 (2020). https://doi.org/10.3390/ijerph17155497
Munyazikwiye, B.B., Vysochinskiy, D., Khadyko, M., Robbersmyr, K.G.: Prediction of Vehicle crashworthiness parameters using piecewise lumped parameters and finite element models. Designs, 2(4), 43 (2018). https://doi.org/10.3390/designs2040043
Castro, Y., Kim, Y.J.: Data mining on road safety: factor assessment on vehicle accidents using classification models. Int. J. Crashworthiness 21(2), 104–111 (2016)
Chang, L.Y., Mannering, F.: Analysis of injury severity and vehicle occupancy in truck- and non-truck-involved accidents. Accid. Anal. Prev. 31(5), 579–592 (1999). https://doi.org/10.1016/S0001-4575(99)00014-7
Dabiri, S., Heaslip, K.: Developing a twitter-based traffic event detection model using deep learning architectures. Expert Syst. Appl. 118, 425–439 (2019)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017
Deka, P.C., et al.: Support vector machine applications in the field of hydrology: a review. Appl. Soft Comput. 19, 372–386 (2014)
Delen, D., Sharda, R., Bessonov, M.: Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accid. Anal. Prev. 38(3), 434–444 (2006). https://doi.org/10.1016/j.aap.2005.06.024
Delen, D., Tomak, L., Topuz, K., Eryarsoy, E.: Investigating injury severity risk factors in automobile crashes with predictive analytics and sensitivity analysis methods. J. Transp. Health 4, 118–131 (2017)
Free, J.C., Hall, J.W., Montano, C.A.: Identification of mathematical models from impact data: application to thoracic impact. Technical report, SAE Technical Paper (1976)
Gandhi, U.N., Hu, S.J.: Data-based approach in modeling automobile crash. Int. J. Impact Eng. 16(1), 95–118 (1995). https://doi.org/10.1016/0734-743X(94)E0029-U
Ghosh, B., Asif, M.T., Dauwels, J.: Bayesian prediction of the duration of non-recurring road incidents. In: 2016 IEEE Region 10 Conference (TENCON), pp. 87–90. IEEE (2016)
Graff, L., Harbrecht, H., Zimmermann, M.: On the computation of solution spaces in high dimensions. Struct. Multidiscip. Optim. 54(4), 811–829 (2016). https://doi.org/10.1007/s00158-016-1454-x
Gutierrez-Osorio, C., Pedraza, C.: Modern data sources and techniques for analysis and forecast of road accidents: a review. J. Traffic Transp. Eng. (English Edition) 7(4), 432–446 (2020)
Hashmienejad, S.H.A., Hasheminejad, S.M.H.: Traffic accident severity prediction using a novel multi-objective genetic algorithm. Int. J. Crashworthiness 22(4), 425–440 (2017)
Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Syst. 16(1), 44–55 (2001)
Hou, S., Li, Q., Long, S., Yang, X., Li, W.: Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria. Finite Elem. Anal. Design 43(6–7), 555–565 (2007). https://doi.org/10.1016/j.finel.2006.12.008
Jiang, Z., Gu, M.: Optimization of a fender structure for the crashworthiness design. Mater. Design 31(3), 1085–1095 (2010). https://doi.org/10.1016/j.matdes.2009.09.047
Kamal, M.M.: Analysis and simulation of vehicle to barrier impact. In: SAE Technical Papers. SAE International (1970). https://doi.org/10.4271/700414
Krishnamoorthy, R., Takla, M., Subic, A., Scott, D.: Design optimisation of passenger car hood panels for improved pedestrian protection. Adv. Mater. Res. 633, 62–76 (2013). https://doi.org/10.4028/www.scientific.net/AMR.633.62
Kumar, V.L.M.: Predictive analytics: a review of trends and techniques. Int. J. Comput. Appl. 182(1), 31–37 (2018). https://doi.org/10.5120/ijca2018917434
Lavinia, G.: A stochastic algorithm for the identification of solution spaces in high-dimensional design spaces (2013). https://oatd.org/oatd/record?record=oai
Li, X., Lord, D., Zhang, Y., Xie, Y.: Predicting motor vehicle crashes using Support Vector Machine models. Accid. Anal. Prev. 40(4), 1611–1618 (2008). https://doi.org/10.1016/j.aap.2008.04.010
Liu, Y.: Crashworthiness design of multi-corner thin-walled columns. Thin-Walled Struct. 46(12), 1329–1337 (2008). https://doi.org/10.1016/j.tws.2008.04.003
Lu, Q., Karimi, H.R., Robbersmyr, K.G.: A data-based approach for modeling and analysis of vehicle collision by LPV-ARMAX models. J. Appl. Math. (2013). https://doi.org/10.1155/2013/452391
Mentzer, S.G., Radwan, R.A., Hollowell, W.T.: The SISAME methodology for extraction of optimal lumped parameter structural crash models. SAE Technical Papers (1992). https://doi.org/10.4271/920358
Mercier, F., Guillon, M., Maillot, S.: Deployment of optimization studies using alternova: design of a hood inner panel for pedestrian safety performance. Ingénieurs de l’Automobile, pp. 29–46 (2012)
Mirzaei, M., Shakeri, M., Seddighi, M., Seyedi, S.: Using of neural network and genetic algorithm in multiobjective optimization of collapsible energy absorbers (2010)
Munyazikwiye, B.B., Karimi, H.R., Robbersmyr, K.G.: Application of genetic algorithm on parameter optimization of three vehicle crash scenarios. IFAC-PapersOnLine 50(1), 3697–3701 (2017)
Munyazikwiye, B.B., Karimi, H.R., Robbersmyr, K.G.: A mathematical model for vehicle-occupant frontal crash using genetic algorithm. In: Proceedings - 2016 UKSim-AMSS 18th International Conference on Computer Modelling and Simulation, UKSim 2016 (April), 141–146 (2016). https://doi.org/10.1109/UKSim.2016.12
Munyazikwiye, B.B., Robbersmyr, K.G., Karimi, H.R.: A state-space approach to mathematical modeling and parameters identification of vehicle frontal crash. Syst. Sci. Control Eng. 2(1), 351–361 (2014). https://doi.org/10.1080/21642583.2014.883108
Mussone, L., Ferrari, A., Oneta, M.: An analysis of urban collisions using an artificial intelligence model. Accid. Anal. Prev. 31(6), 705–718 (1999). https://doi.org/10.1016/S0001-4575(99)00031-7
Mussone, L., Rinelli, S.: An accident analysis for urban vehicular flow. WIT Transactions on The Built Environment, vol. 26 (1970)
Noorsumar, G., Robbersmyr, K., Rogovchenko, S., Vysochinskiy, D.: Crash response of a repaired vehicle-influence of welding UHSS members. In: SAE Technical Papers, vol. 2020-April. SAE International (2020). https://doi.org/10.4271/2020-01-0197
Noorsumar, G., Rogovchenko, S., Robbersmyr, K.G., Vysochinskiy, D.: Mathematical models for assessment of vehicle crashworthiness: a review. Int. J. Crashworthiness pp. 1–15 (2021). https://doi.org/10.1080/13588265.2021.1929760, https://www.tandfonline.com/doi/full/10.1080/13588265.2021.1929760
Notes, L.: Parameter identification; winter school inverse problems 2005. Technical report(2005)
Omar, T., Eskandarian, A., Bedewi, N.: Vehicle crash modelling using recurrent neural networks. Technical Report, vol. 9 (1998)
Pandhare, K.R., Shah, M.A.: Real time road traffic event detection using twitter and spark. In: 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 445–449. IEEE (2017)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)
Prasad, A.K.: CRASH3 damage algorithm reformulation for front and rear collisions. SAE Technical Papers (1990). https://doi.org/10.4271/900098
Ren, H., Song, Y., Wang, J., Hu, Y., Lei, J.: A deep learning approach to the citywide traffic accident risk prediction. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3346–3351. IEEE (2018)
Rezaie Moghaddam, F., Afandizadeh, S., Ziyadi, M.: Prediction of accident severity using artificial neural networks. Int. J. Civil Eng. 9(1), 41–48 (2011)
Roberts, V., Robbins, D.H.: Multidimensional mathematical modeling of occupant dynamics under crash conditions. SAE Transactions, pp. 1071–1081 (1969)
Sobieszczanski-Sobieski, J., Kodiyalam, S., Yang, R.Y.: Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash. Struct. Multi. Optim. 22(4), 295–306 (2001). https://doi.org/10.1007/s00158-001-0150-6, https://link.springer.com/article/10.1007/s00158-001-0150-6
Swamy, S., Noorsumar, G., Chidanandappa, S.: Mass optimized hood design for conflicting performances. In: SAE Technical Papers. No. November, SAE International (2019). https://doi.org/10.4271/2019-28-2546, https://www.sae.org/publications/technical-papers/content/2019-28-2546/
Weijermars, W., et al.: Serious road traffic injuries in Europe, lessons from the eu research project safetycube. Transp. Res. Record 2672(32), 1–9 (2018). https://doi.org/10.1177/0361198118758055
Xiong, X., Chen, L., Liang, J.: A new framework of vehicle collision prediction by combining svm and hmm. IEEE Trans. Intell. Transp. Syst. 19(3), 699–710 (2017)
Yamazaki, K., Han, J.: Maximization of the crushing energy absorption of cylindrical shells. Adv. Eng. Soft. 31(6), 425–434 (2000). https://doi.org/10.1016/S0965-9978(00)00004-1
Yang, R.J., Gu, L., Tho, C.H., Sobieszczanski-Sobieski, J.: Multidisciplinary design optimization of a full vehicle with high performance computing. In: 19th AIAA Applied Aerodynamics Conference (2016) (2001). https://doi.org/10.2514/6.2001-1273
Yasin Çodur, M., Tortum, A.: An artificial neural network model for highway accident prediction: a case study of Erzurum, Turkey. PROMET-Traffic Transp. 27(3), 217–225 (2015)
Zarei, H.R., Kröger, M.: Multiobjective crashworthiness optimization of circular aluminum tubes. Thin-Walled Struct. 44(3), 301–308 (2006). https://doi.org/10.1016/j.tws.2006.03.010
Zhang, C., et al.: A Crash Severity Prediction Method Based on Improved Neural Network and Factor Analysis. Discret. Dyn. Nat. Soc. (2020). https://doi.org/10.1155/2020/4013185
Zhang, J., Li, Z., Pu, Z., Xu, C.: Comparing prediction performance for crash injury severity among various machine learning and statistical methods. IEEE Access 6, 60079–60087 (2018). https://doi.org/10.1109/ACCESS.2018.2874979
Zhang, T.: An introduction to support vector machines and other kernel-based learning methods. AI Mag. 22(2), 103–103 (2001)
Zhang, Z., He, Q., Gao, J., Ni, M.: A deep learning approach for detecting traffic accidents from social media data. Transp. Res. Part C Emerg. Technol. 86, 580–596 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Noorsumar, G., Robbersmyr, K.G., Rogovchenko, S., Vysochinskiy, D. (2022). An Overview of Data Based Predictive Modeling Techniques Used in Analysis of Vehicle Crash Severity. In: Sanfilippo, F., Granmo, OC., Yayilgan, S.Y., Bajwa, I.S. (eds) Intelligent Technologies and Applications. INTAP 2021. Communications in Computer and Information Science, vol 1616. Springer, Cham. https://doi.org/10.1007/978-3-031-10525-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-10525-8_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10524-1
Online ISBN: 978-3-031-10525-8
eBook Packages: Computer ScienceComputer Science (R0)