Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Remarks on the Zeros of Quadratic Coquaternionic Polynomials

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

In this paper we focus on the study of monic quadratic polynomials whose coefficients are coquaternions and present several new results concerning the number and nature of its zeros. Examples specially constructed to illustrate the diversity of cases that can occur are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ata, E., Yayli, Y.: Split quaternions and semi-Euclidean projective spaces. Chaos, Solitons Fractals 41(4), 1910–1915 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bekar, M., Yayli, Y.: Involutions of complexified quaternions and split quaternions. Adv. Appl. Clifford Algebras 23, 283–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brody, D., Graefe, E.M.: On complexified mechanics and coquaternions. J. Phys. A: Math. Theory 44, 1–9 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockle, J.: On systems of algebra involving more than one imaginary; and on equations of the fifth degree. Phil. Mag. 35(3), 434–435 (1849)

    Google Scholar 

  5. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Basins of attraction for a quadratic coquaternionic map. Chaos, Solitons Fractals 104, 716–724 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Iteration of quadratic maps on coquaternions. Int. J. Bifurcation Chaos 25, 1730039 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Polynomials over quaternions and coquaternions: a unified approach. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10405, pp. 379–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62395-5_26

    Chapter  Google Scholar 

  8. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: The number of zeros of unilateral polynomials over coquaternions revisited. Linear Multilinear Algebra 67(6), 1231–1249 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Mathematica tools for coquaternions. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12952, pp. 449–464. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86973-1_32

    Chapter  Google Scholar 

  10. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Dynamics of the coquaternionic maps \(x^2 + bx\). Rendiconti del Circolo Matematico di Palermo (Article in Press) (2022)

    Google Scholar 

  11. Gao, C., Chen, X., Shen, Y.-G.: Quintessence and phantom emerging from the split-complex field and the split-quaternion field. Gen. Relativ. Gravit. 48(1), 1–23 (2015). https://doi.org/10.1007/s10714-015-2006-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Gogberashvili, M.: Split quaternions and particles in (2+1)-space. Eur. hys. J. C 74(12), 1–9 (2014). https://doi.org/10.1140/epjc/s10052-014-3200-0

    Article  Google Scholar 

  13. Jiang, T., Zhang, Z., Jiang, Z.: Algebraic techniques for Schrödinger equations in split quaternionic mechanics. Comput. Math. Appl. 75, 2217–2222 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kula, L., Yayli, Y.: Split quaternions and rotations in semi Euclidean space \({E}^4_2\). J. Korean Math. Soc. 44(6), 1313–1327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ni, Q.-Y., Ding, J.-K., Cheng, X.-H., Jiao, Y.-N.: \({2\times 2}\) matrix representation forms and inner relationships of split quaternions. Adv. Appl. Clifford Algebras 29(2), 1–12 (2019). https://doi.org/10.1007/s00006-019-0951-6

    Article  MATH  Google Scholar 

  16. Özdemir, M., Ergin, A.: Some geometric applications of split quaternions. In: Proceedings of the 16th International Conference on Jangjeon Mathematical Society, vol. 16, pp. 108–115 (2005)

    Google Scholar 

  17. Özdemir, M., Ergin, A.: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geometry Phys. 56(2), 322–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Özdemir, M., Simsek, H.: Rotations on a lightcone in Minkowski 3-space. Adv. Appl. Clifford Algebras 27, 2841–2853 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Scharler, D.F., Siegele, J., Schröcker, H.-P.: Quadratic split quaternion polynomials: factorization and geometry. Adv. Appl. Clifford Algebras 30(1), 1–23 (2019). https://doi.org/10.1007/s00006-019-1037-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Serôdio, R., Beites, P., Vitória, J.: Intersection of a double cone and a line in the split-quaternions context. Adv. Appl. Clifford Algebras 27(3), 2795–2803 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Research at CMAT was partially financed by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia, within the Projects UIDB/00013/2020 and UIDP/00013/2020. Research at NIPE has been financed by FCT, within the Project UIDB/03182/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Irene Falcão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falcão, M.I., Miranda, F., Severino, R., Soares, M.J. (2022). Remarks on the Zeros of Quadratic Coquaternionic Polynomials. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13377. Springer, Cham. https://doi.org/10.1007/978-3-031-10536-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10536-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10535-7

  • Online ISBN: 978-3-031-10536-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics