Abstract
In this paper we focus on the study of monic quadratic polynomials whose coefficients are coquaternions and present several new results concerning the number and nature of its zeros. Examples specially constructed to illustrate the diversity of cases that can occur are also presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ata, E., Yayli, Y.: Split quaternions and semi-Euclidean projective spaces. Chaos, Solitons Fractals 41(4), 1910–1915 (2009)
Bekar, M., Yayli, Y.: Involutions of complexified quaternions and split quaternions. Adv. Appl. Clifford Algebras 23, 283–29 (2013)
Brody, D., Graefe, E.M.: On complexified mechanics and coquaternions. J. Phys. A: Math. Theory 44, 1–9 (2011)
Cockle, J.: On systems of algebra involving more than one imaginary; and on equations of the fifth degree. Phil. Mag. 35(3), 434–435 (1849)
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Basins of attraction for a quadratic coquaternionic map. Chaos, Solitons Fractals 104, 716–724 (2017)
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Iteration of quadratic maps on coquaternions. Int. J. Bifurcation Chaos 25, 1730039 (2017)
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Polynomials over quaternions and coquaternions: a unified approach. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10405, pp. 379–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62395-5_26
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: The number of zeros of unilateral polynomials over coquaternions revisited. Linear Multilinear Algebra 67(6), 1231–1249 (2019)
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Mathematica tools for coquaternions. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12952, pp. 449–464. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86973-1_32
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Dynamics of the coquaternionic maps \(x^2 + bx\). Rendiconti del Circolo Matematico di Palermo (Article in Press) (2022)
Gao, C., Chen, X., Shen, Y.-G.: Quintessence and phantom emerging from the split-complex field and the split-quaternion field. Gen. Relativ. Gravit. 48(1), 1–23 (2015). https://doi.org/10.1007/s10714-015-2006-1
Gogberashvili, M.: Split quaternions and particles in (2+1)-space. Eur. hys. J. C 74(12), 1–9 (2014). https://doi.org/10.1140/epjc/s10052-014-3200-0
Jiang, T., Zhang, Z., Jiang, Z.: Algebraic techniques for Schrödinger equations in split quaternionic mechanics. Comput. Math. Appl. 75, 2217–2222 (2018)
Kula, L., Yayli, Y.: Split quaternions and rotations in semi Euclidean space \({E}^4_2\). J. Korean Math. Soc. 44(6), 1313–1327 (2007)
Ni, Q.-Y., Ding, J.-K., Cheng, X.-H., Jiao, Y.-N.: \({2\times 2}\) matrix representation forms and inner relationships of split quaternions. Adv. Appl. Clifford Algebras 29(2), 1–12 (2019). https://doi.org/10.1007/s00006-019-0951-6
Özdemir, M., Ergin, A.: Some geometric applications of split quaternions. In: Proceedings of the 16th International Conference on Jangjeon Mathematical Society, vol. 16, pp. 108–115 (2005)
Özdemir, M., Ergin, A.: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geometry Phys. 56(2), 322–336 (2006)
Özdemir, M., Simsek, H.: Rotations on a lightcone in Minkowski 3-space. Adv. Appl. Clifford Algebras 27, 2841–2853 (2017)
Scharler, D.F., Siegele, J., Schröcker, H.-P.: Quadratic split quaternion polynomials: factorization and geometry. Adv. Appl. Clifford Algebras 30(1), 1–23 (2019). https://doi.org/10.1007/s00006-019-1037-1
Serôdio, R., Beites, P., Vitória, J.: Intersection of a double cone and a line in the split-quaternions context. Adv. Appl. Clifford Algebras 27(3), 2795–2803 (2017)
Acknowledgments
Research at CMAT was partially financed by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia, within the Projects UIDB/00013/2020 and UIDP/00013/2020. Research at NIPE has been financed by FCT, within the Project UIDB/03182/2020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Falcão, M.I., Miranda, F., Severino, R., Soares, M.J. (2022). Remarks on the Zeros of Quadratic Coquaternionic Polynomials. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13377. Springer, Cham. https://doi.org/10.1007/978-3-031-10536-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-10536-4_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10535-7
Online ISBN: 978-3-031-10536-4
eBook Packages: Computer ScienceComputer Science (R0)