Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Example of Use of Variational Methods in Quantum Machine Learning

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

This paper introduces a deep learning system based on a quantum neural network for the binary classification of points of a specific geometric pattern (Two-Moons Classification problem) on a plane.

We believe that the use of hybrid deep learning systems (classical + quantum) can reasonably bring benefits, not only in terms of computational acceleration but in understanding the underlying phenomena and mechanisms; that will lead to the creation of new forms of machine learning, as well as to a strong development in the world of quantum computation.

The chosen dataset is based on a 2D binary classification generator, which helps test the effectiveness of specific algorithms; it is a set of 2D points forming two interspersed semicircles. It displays two disjointed data sets in a two-dimensional representation space: the features are, therefore, the individual points’ two coordinates, \(x_1\) and \(x_2\).

The intention was to produce a quantum deep neural network with the minimum number of trainable parameters capable of correctly recognising and classifying points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scikit-learn.org/stable/index.html.

  2. 2.

    https://quantumai.google/cirq.

  3. 3.

    https://www.tensorflow.org/quantum.

  4. 4.

    https://pennylane.ai/.

  5. 5.

    https://keras.io/.

References

  1. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Roy. Soc. London. Ser. A: Math. Phys. Sci. 439(1907), 553–558 (1992)

    Google Scholar 

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  4. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  5. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Sci. Technol. 5(4), 044007 (2020)

    Article  Google Scholar 

  6. Salm, M., Barzen, J., Leymann, F., Weder, B.: About a criterion of successfully executing a circuit in the NISQ era: what wd \( \ll 1/\epsilon \) eff really means. In: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software, pp. 10–13 (2020)

    Google Scholar 

  7. Zeidler, E.: Nonlinear Functional Analysis and Its Applications: III: Variational Methods and Optimization. Springer, Cham (2013)

    Google Scholar 

  8. Smith, D.R.: Variational methods in optimization. Courier Corporation (1998)

    Google Scholar 

  9. Borghi, R.: The variational method in quantum mechanics: an elementary introduction. Eur. J. Phys. 39(3), 035410 (2018)

    Article  Google Scholar 

  10. Cerezo, M., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021)

    Article  Google Scholar 

  11. Weigold, M., Barzen, J., Leymann, F., Salm, M.: Data encoding patterns for quantum computing. In: Proceedings of the 27th Conference on Pattern Languages of Programs, pp. 1–11 (2020)

    Google Scholar 

  12. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)

    Article  MathSciNet  Google Scholar 

  13. Cortese, J.A., Braje, T.M.: Loading classical data into a quantum computer. arXiv preprint arXiv:1803.01958 (2018)

  14. LaRose, R., Coyle, B.: Robust data encodings for quantum classifiers. Phys. Rev. A 102(3), 032420 (2020)

    Article  Google Scholar 

  15. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  Google Scholar 

  16. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhys. Lett.) 119(6), 60002 (2017)

    Article  Google Scholar 

  17. Weigold, M., Barzen, J., Leymann, F., Salm, M.: Expanding data encoding patterns for quantum algorithms. In: 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C), pp. 95–101. IEEE (2021)

    Google Scholar 

  18. Grant, E., et al.: Hierarchical quantum classifiers. NPJ Quant. In. 4(1), 1–8 (2018)

    Article  Google Scholar 

  19. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411 (2013)

  20. Wiebe, N., Kapoor, A., Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. arXiv preprint arXiv:1401.2142 (2014)

  21. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  22. Perri, D., Simonetti, M., Lombardi, A., Faginas-Lago, N., Gervasi, O.: Binary classification of proteins by a machine learning approach. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 549–558. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_41

    Chapter  Google Scholar 

  23. Benedetti, P., Perri, D., Simonetti, M., Gervasi, O., Reali, G., Femminella, M.: Skin cancer classification using inception network and transfer learning. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12249, pp. 536–545. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58799-4_39

    Chapter  Google Scholar 

  24. Perri, D., Simonetti, M., Lombardi, A., Faginas-Lago, N., Gervasi, O.: A new method for binary classification of proteins with machine learning. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12958, pp. 388–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87016-4_29

    Chapter  Google Scholar 

  25. Perri, D., Simonetti, M., Gervasi, O.: Synthetic data generation to speed-up the object recognition pipeline. Electronics 11(1), 2 (2021)

    Article  Google Scholar 

  26. Yoo, S., Bang, J., Lee, C., Lee, J.: A quantum speedup in machine learning: finding an N-bit Boolean function for a classification. New J. Phys. 16(10), 103014 (2014)

    Article  Google Scholar 

  27. Ouyang, Y.: Quantum storage in quantum ferromagnets. Phys. Rev. B 103(14), 144417 (2021)

    Article  Google Scholar 

  28. Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.S.: Quantum generalisation of feedforward neural networks. NPJ Quant. Inf. 3(1), 1–8 (2017)

    Article  Google Scholar 

  29. Bharti, K., et al.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94(1), 015004 (2022)

    Article  MathSciNet  Google Scholar 

  30. Endo, S., Cai, Z., Benjamin, S.C., Yuan, X.: Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90(3), 032001 (2021)

    Article  Google Scholar 

  31. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)

    Article  Google Scholar 

  32. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)

  33. Verdon, G., Broughton, M., Biamonte, J.: A quantum algorithm to train neural networks using low-depth circuits. arXiv preprint arXiv:1712.05304 (2017)

  34. Huggins, W., Patil, P., Mitchell, B., Whaley, K.B., Stoudenmire, E.M.: Towards quantum machine learning with tensor networks. Quant. Sci. Technol. 4(2), 024001 (2019)

    Article  Google Scholar 

  35. Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quant. Sci. Technol. 2(4), 045001 (2017)

    Article  Google Scholar 

  36. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)

    Article  MathSciNet  Google Scholar 

  37. Shepherd, D., Bremner, M.J.: Instantaneous quantum computation. arXiv preprint arXiv:0809.0847 (2008)

  38. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quant. Technol. 2(12), 1900070 (2019)

    Article  Google Scholar 

  39. Hubregtsen, T., Pichlmeier, J., Stecher, P., Bertels, K.: Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability. Quant. Mach. Intell. 3(1), 1–19 (2021). https://doi.org/10.1007/s42484-021-00038-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Simonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simonetti, M., Perri, D., Gervasi, O. (2022). An Example of Use of Variational Methods in Quantum Machine Learning. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13382. Springer, Cham. https://doi.org/10.1007/978-3-031-10592-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10592-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10591-3

  • Online ISBN: 978-3-031-10592-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics