Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topic and Reference Guided Keyphrase Generation from Social Media

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13369))

  • 2013 Accesses

Abstract

Automatic keyphrase generation can help human efficiently understand or process critical information from massive social media posts. Seq2Seq-based generation models that can produce both present and absent keyphrases have achieved remarkable performance. However, existing models are limited by the sparseness of posts that are widely exhibited in social media language. Sparseness makes it difficult for models to obtain useful features and generate accurate keyphrases. To address this problem, we propose the Topic and Reference Guided Keyphrase Generation model(TRGKG) for social media posts, which enrich scarce posts features by corpus-level topics and post-level reference knowledge. The proposed model incorporates a contextual neural topic model to exploit topics and a heterogeneous graph to capture reference knowledge from retrieved related posts. To guide the decoding process, we introduce new topic-aware hierarchical attention and copy mechanism, which directly copies appropriate words from both the source post and its references. Experiments on two public datasets demonstrate that TRGKG achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J., Zhang, X., Wu, Y., Yan, Z., Li, Z.: Keyphrase generation with correlation constraints. In: Empirical Methods in Natural Language Processing (2018)

    Google Scholar 

  2. Chen, W., Gao, Y., Zhang, J., King, I., Lyu, M.R.: Title-guided encoding for keyphrase generation. In: National Conference on Artificial Intelligence (2019)

    Google Scholar 

  3. Cho, K., van Merriënboer, B., Gulcehre, C.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP (2014)

    Google Scholar 

  4. He, Q., Yang, J., Shi, B.: Constructing knowledge graph for social networks in a deep and holistic way. In: Companion Proceedings of the Web Conference (2020)

    Google Scholar 

  5. Kim, J., Jeong, M., Choi, S., won Hwang, S.: Structure-augmented keyphrase generation. In: Empirical Methods in Natural Language Processing (2021)

    Google Scholar 

  6. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations (2014)

    Google Scholar 

  7. Meng, R., Yuan, X., Wang, T., Zhao, S., Trischler, A., He, D.: An empirical study on neural keyphrase generation. In: NAACL (2021)

    Google Scholar 

  8. Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., Chi, Y.: Deep keyphrase generation. In: Meeting of the Association for Computational Linguistics (2017)

    Google Scholar 

  9. Meng, X., Wei, F., Liu, X., Zhou, M., Li, S., Wang, H.: Entity-centric topic-oriented opinion summarization in twitter. In: Knowledge Discovery and Data Mining (2012)

    Google Scholar 

  10. Miao, Y., Grefenstette, E., Blunsom, P.: Discovering discrete latent topics with neural variational inference. Computation and Language. arXiv preprint arXiv:1706.00359 (2017)

  11. Mihalcea, R., Tarau, P.: Textrank: Bringing order into text. In: Empirical Methods in Natural Language Processing (2004)

    Google Scholar 

  12. Panwar, M., Shailabh, S., Aggarwal, M., Krishnamurthy, B.: Tan-ntm: topic attention networks for neural topic modeling. In: ACL (2021)

    Google Scholar 

  13. Ruths, D., Pfeffer, J.: Social media for large studies of behavior. Science 1063–1064 (2014)

    Google Scholar 

  14. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: Mpnet: masked and permuted pre-training for language understanding. Computation and Language. arXiv preprint arXiv:2004.09297 (2020)

  15. Vaswani, A., et al.: Attention is all you need. In: Neural Information Processing Systems (2017)

    Google Scholar 

  16. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. STAT 20 (2017)

    Google Scholar 

  17. Wang, Y., Li, J., Chan, H.P., King, I., Lyu, M.R., Shi, S.: Topic-aware neural keyphrase generation for social media language. In: ACL (2019)

    Google Scholar 

  18. Wang, Y., Li, J., King, I., Lyu, M.R., Shi, S.: Microblog hashtag generation via encoding conversation contexts. In: North American Chapter of the Association for Computational Linguistics (2019)

    Google Scholar 

  19. Ye, J., Cai, R., Gui, T., Zhang, Q.: Heterogeneous graph neural networks for keyphrase generation. Computation and Language. arXiv preprint arXiv:2109.04703 (2021)

  20. Ye, J., Gui, T., Luo, Y., Xu, Y., Zhang, Q.: One2set: generating diverse keyphrases as a set. In: Meeting of the Association for Computational Linguistics (2021)

    Google Scholar 

  21. Yuan, X., et al.: One size does not fit all: Generating and evaluating variable number of keyphrases. In: Meeting of the Association for Computational Linguistics (2020)

    Google Scholar 

  22. Zhang, Q., Wang, Y., Gong, Y., Huang, X.: Keyphrase extraction using deep recurrent neural networks on twitter. In: EMNLP (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R &D Program of China under Grants (No. 2018YFB0204300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, X., Chen, X., Huang, Z., Dou, Y., Hu, B. (2022). Topic and Reference Guided Keyphrase Generation from Social Media. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13369. Springer, Cham. https://doi.org/10.1007/978-3-031-10986-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10986-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10985-0

  • Online ISBN: 978-3-031-10986-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics